Транспорт в мембранной упаковке.

Пассивный транспорт.Диффузия - это движение частиц среды, приводящее к переносу ве­щества из зоны, где его концентрация высока в зону с низкой концентра­цией. При диффузионном транспорте мембрана функционирует как осмотический барьер. Скорость диффузии зависит от величины молекул и их относительной растворимости в жирах. Чем меньше раз­меры молекул и чем более они жирорастворимы (липофильны), тем быстрее произойдет их перемещение через липидный бислой. Диффузия может быть нейтральной (перенос незаряженных молекул) и облегченной (с помощью специальных белков пере­носчиков). Скорость облегченной диффузии выше, чем нейтральной. Максимальной проникающей способностью обладает вода, так как ее молекулы малы и незаряже­ны. Диффузия воды через клеточ­ную мембрану называется осмо­сом. Предполагается, что в клеточ­ной мембране для проникновения воды и некоторых ионов существу­ют специальные "поры". Число их невелико, а диаметр составляет около 0,3-0,8 нм. Наиболее быст­ро диффундируют через мембра­ну легко растворимые в липидном бислое молекулы, например О, и незаряженные полярные молеку­лы небольшого диаметра (СО, мо­чевина).
Перенос полярных молекул (сахаров, аминокислот), осуще­ствляемый с помощью специальных мембранных транспортных белков называется облегченной диффузией. Такие белки обна­ружены во всех типах биологических мембран, и каждый конкрет­ный белок предназначен для переноса молекул определенного клас­са. Транспортные белки являются трансмембранными, их полипеп­тидная цепь пересекает липидный бислой несколько раз, формируя в нем сквозные проходы. Это обеспечивает перенос специфичес­ких веществ через мембрану без непосредственного контакта с ней. Существует два основных класса транспортных белков: белки-переносчики (транспортеры) и каналообразующие белки (бел­ки-каналы). Белки-переносчики переносят молекулы через мембра­ну, предварительно изменяя их конфигурацию. Каналообразующие белки формируют в мембране заполненные водой поры. Когда поры открыты, молекулы специфических веществ (обычно неорганические ионы подходящего размера и заряда) про­ходят сквозь них. Если молекула транспортируемого вещества не имеет заряда, то направление транспорта определяется градиентом концентрации. Если молекула заряжена, то на ее транспорт, кроме градиента кон­центрации, влияет и электрический заряд мембраны (мембранный потенциал). Внутренняя сторона плазмалеммы обычно заряжена от­рицательно по отношению к наружной. Мембранный потенциал об­легчает проникновение в клетку положительно заряженных ионов и препятствует прохождению ионов заряженных отрицательно.

Активный транспорт.Активным транспортом называется перенос веществ против элек­трохимического градиента. Он всегда осуществляется белками-транспортерами и тесно свя­зан с источником энергии. В белках-перенос­чиках имеются участки связывания с транспор­тируемым веществом. Чем больше таких учас­тков связывается с веще­ством, тем выше ско­рость транспорта. Селективный перенос одного вещества называется унипортом. Перенос нескольких веществ осуществляют котранспортные системы. Если перенос идет в одном направлении - это симпорт, если в противоположных – антипорт. Так, например, глюкоза из внеклеточной жидкости в клетку переносится унипортно. Перенос же глюкозы и Na+ из полости кишечника или канальцев почек соответственно в клетки кишечника или кровь осу­ществляется симпортно, а перенос С1~ и НСО антипортно. Предпо­лагается, что при переносе возникают обратимые конформационные изменения в транспортере, что и позволяет премещать соединенные с ним вещества.

Примером белка-переносчика, использующего для транспорта веществ энергию выделившуюся при гидролизе АТФ, является Na++- насос, обнаруженный в плазматической мембране всех клеток. Na+-K насос работает по принципу антипорта, перекачи­вая Na+ из клетки и К+ внутрь клетки против их электрохимических градиентов. Градиент Na+ создает осмотическое давление, поддер­живает клеточный объем и обеспечивает транспорт сахаров и ами­нокислот. На работу этого насоса тратится треть всей энергии не­обходимой для жизнедеятельности клеток. При изучении механизма действия Na+/K+- насоса было установ­лено, что он является ферментом АТФазой и трансмембранным ин­тегральным белком. В присутствии Na+ и АТФ под действием АТФа-зы от АТФ отделяется концевой фосфат и присоединяется к остатку аспарагиновой кислоты на молекуле АТФазы. Молекула АТФазы фосфорилируется, изменяет свою конфигурацию и Na+ выводится из клетки. Вслед за выведением Na из клетки всегда происходит транс­порт К+ в клетку. Для этого от АТФазы в присутствии К отщепляется ранее присоединенный фосфат. Фермент дефосфорилируется, восста­навливает свою конфигурацию и К+ "закачивается" в клетку.

АТФаза образована двумя субъединицами, большой и малой. Большая субъединица состоит из тысячи аминокислотных остатков, пересекающих бислой несколько раз. Она обладает каталитической активностью и способна обратимо фосфорилироваться и дефосфорилироваться. Большая субъединица на цитоплазматической сторо­не имеет участки для связывания Na+ и АТФ, а на внешней стороне -участки для связывания К+ и уабаина. Малая субъединица является гликопротеином и функция его пока неизвестна.

Na+-K насос обладает электрогенным эффектом. Он удаляет три положительно заряженных иона Naf из клетки и вносит в нее два иона К+. В результате через мембрану течет ток, образующий элект­рический потенциал с отрицательным значением во внутренней час­ти клетки по отношению к ее наружной поверхности. Na+/K+-насос регулирует клеточный объем, контролирует концентрацию веществ внутри клетки, поддерживает осмотическое давление, участвует в создании мембранного потенциала.
Транспорт в мембранной упаковке. Перенос через мембрану макромолекул (белков, нуклеиновых кис­лот, полисахаридов, липопротеидов) и других частиц осуществляет­ся посредством последовательного образования и слияния окружен­ных мембраной пузырьков (везикул). Процесс везикулярного транспор­та проходит в две стадии. Вначале мембрана пузырька и плазмалемма слипаются, а затем сливаются. Для протекания 2 стадии необхо­димо чтобы молекулы воды были вы­теснены взаимодействующими липидными бислоями, которые сближаются до расстояния 1-5 нм. Считает­ся, что данный процесс активизируют специальные белки слияния (они выделены пока только у вирусов). Везикулярный транспорт имеет важную особенность - поглощенные или секретируемые макромолекулы, находящиеся в пузырьках, обычно не смешиваются с другими макромоле­кулами или органеллами клетки. Пу­зырьки могут сливаться со специфи­ческими мембранами, что и обеспе­чивает обмен макромолекулами меж­ду внеклеточным пространством и содержимым клетки. Аналогично происходит перенос макромолекул из одного компартмента клетки в другой.

Транспорт макромолекул и частиц в клетку называется эндоцитозом. При этом транспортируемые вещества обволакиваются ча­стью плазматической мембраны, образуется пузырек (вакуоль), ко­торый перемещается внутрь клетки. В зависимости от размера обра­зующихся пузырьков различают два вида эндоцитоза - пиноцитоз и фагоцитоз.
Пиноцитоз обеспечивает поглощение жидкости и растворенных веществ в виде небольших пузырьков (d=150 нм). Фагоцитоз - это поглощение больших частиц, микроорганизов или обломков органелл, клеток. При этом образуют­ся крупные пузырьки, фагосомы или вакуоли (d-250 нм и более).

Рецепторная функция плазмалеммы.Это однаиз главных, универсальных для всех клеток, является рецепторная функция плазмалеммы. Она определяет взаимодействие клеток друг с другом и с внешней средой.

Всё многообразие информационных межклеточных взаимодей­ствий схематически можно представить как цепь последовательных реакций сигнал-рецептор-вторичный посредник-ответ (концепция сигнал-ответ). Передачу информации от клетки к клетке осуществляют сигналь­ные молекулы, которые вырабатываются в одних клетках и специ­фически влияют на другие, чувствительные к сигналу (клетки-ми­шени). Сигнальная молекула - первичный посредник связыва­ется с находящимися на клетках-мишенях рецепторами, реагирую­щими только на определенные сигналы.

 








Дата добавления: 2015-10-19; просмотров: 4966;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.