Магнитотвердые материалы

К магнитотвердым материалам относится магнитные материа­лы с широкой гистерезисной петлей и большой коэрцитивной си­лой Нс (рис. 6.3, г).

Основными характеристиками магнитотвердых материалов яв­ляются коэрцитивная сила Нс, остаточная индукция Вс, максималь­ная удельная магнитная энергия, отдаваемая во внешнее простран­ство ωmах.

Магнитная проницаемость μмагнитотвердых материалов зна­чительно меньше, чем у магнитомягких. Чем «тверже» магнитный материал, т. е. чем выше его коэрцитивная сила Нс, тем меньше его магнитная проницаемость.

Влияние температуры на величину остаточной магнитной индук­ции Вr, которая соответствует максимальному значению магнитной индукции для данного материала Втах, оценивается температурным коэффициентом остаточной магнитной индукции (К-1)

αв = ((Br)2 – (Br)1)/(Br)1(T2-T1) (67)

где (Br)1 и (Br)2 - значения остаточной индукции материала при температурах T1, и Т2соответственно.

Максимальная удельная магнитная энергия штах является важней­шим параметром при оценке качества магнитотвердых материалов. Максимальная удельная магнитная энергия, Дж/м2:

ωmax = (BH)max /2. (68)

Постоянный магнит при замкнутом магнитопроводе практичес­ки не отдает энергию во внешнее пространство, так как почти все магнитные силовые линии замыкаются внутри сердечника, и маг­нитное поле вне сердечника отсутствует. Для использования маг­нитной энергии постоянных магнитов в замкнутом магнитопрово­де создают воздушный зазор определенных размеров и конфигура­ции, магнитное поле в котором используют для технических целей.

Магнитный поток постоянного магнита с течением времени уменьшается. Это явление называется старением магнита. Старе­ние может быть обратимым и необратимым.

В случае обратимого старения при воздействии на постоянный магнит ударов, толчков, резких колебаний температуры, внешних постоянных полей происходит снижение его остаточной магнитной индукции Вr на 1...3%; при повторном намагничивании свойства таких магнитов восстанавливаются.

Если со временем в постоянном магните произошли структур­ные изменения, то повторное намагничивание не устраняет необра­тимого старения.

По назначению магнитотвердые материалы подразделяют на материалы для постоянных магнитов и материалы для записи и хра­нения информации (звуковой, цифровой, видеоинформации и др.).

По составу и способу получения магнитотвердые материалы подразделяют на литые, порошковые и прочие.

Литые материалы на основе сплавов.Эти материалы имеют ос­новой сплавы железо-никель-алюминий (Fe-Ni-Al) и железо-ни­кель-кобальт (Fe-Ni-Co) и являются основными материалами для изготовления постоянных магнитов. Эти сплавы относят к преци­зионным, так как их качество в решающей степени определяется строгим соблюдением технологических факторов.

Магнитотвердые литые материалы получают в результате дис­персионного твердения сплава при его охлаждении с определенной скоростью от температуры плавления до температуры начала рас­пада. В процессе твердения происходит высокотемпературный рас­пад твердого раствора на β - фазу и β2 - фазу. β - фаза близка по соста­ву к чистому железу, которое обладает сильно выраженными маг­нитными свойствами. Она выделяется в виде пластинок однодоменной толщины. β 2 - фаза близка по составу к интерметаллическому соединению никель-алюминий Ni-Al, обладающему низкими маг­нитными свойствами.

В результате получают систему, состоящую из немагнитной фазы β2 с однодоменными сильномагнитными включениями фазы β, ко­торая обладает большой коэрцитивной силой Нс. Такие сплавы не применяют из-за сравнительно низких магнитных свойств. Наибо­лее распространенными являются сплавы железо-никель-алюми­ний, легированные медью Сu и кобальтом Со.

Марки этих материалов содержат буквы Ю и Н, указывающие на наличие в них алюминия и никеля. При использовании легирующих металлов в обозначение марок вводят дополнительные буквы, кото­рые соответствуют этим металлам, например, сплав системы желе­зо-никель-алюминий, легированный кобальтом, марки ЮНДК.

Бескобальтовые сплавы обладают относительно низкими магнитными свойствами, но они являются самыми дешевыми.

Кобальтовые сплавы применяют для изготовления изделий, которые требуют материалов с относительно высокими магнитны­ми свойствами и магнитной изотропностью.

Высококобальтовые сплавы представляют собой спла­вы с магнитной или с магнитной и кристаллической текстурой, со­держащие кобальта более 15%.

Сплавы с магнитной текстурой получают в результате охлажде­ния сплава в магнитном поле с напряженностью 160...280 кА/м от высоких температур 1250...1300°С до температуры приблизитель­но 500 °С. Полученный сплав приобретает улучшенные магнитные характеристики лишь в направлении действия поля, т. е. материал становится магнитоанизотропным.

Для сплавов, содержащих 12% кобальта, термомагнитная обра­ботка увеличивает магнитную энергию приблизительно на 20%, а для сплавов, содержащих 20...25% кобальта, - на 80% и более.

Термомагнитная обработка повышает температуру начала дис­персного распада с 950 °С в сплаве без кобальта до 800 °С в сплаве, содержащем 24% кобальта.

В результате термомагнитной обработки у высококобальтовых сплавов повышается также температура точки Кюри с 730 до 850 °С.

Кристаллическую текстуру получают в процессе особых усло­вий охлаждения сплавов. В результате получают магниты с осо­бой макроструктурой в виде столбчатых кристаллов, ориентиро­ванных в направлении легкого намагничивания. Это повышает магнитные свойства сплавов. Магнитная энергия повышается на 60...70%. Увеличиваются коэрцитивная сила Нс, остаточная маг­нитная индукция Вr и коэффициент выпуклости кривой размагни­чивания материала:

γ = (BH)max / BrHc (69)

Высококобальтовые текстурированные сплавы применяют для изготовления малогабаритных магнитных изделий, требующих высоких магнитных свойств и магнитной анизотропии.

Недостатками высококобальтовых материалов являются высо­кая твердость и хрупкость, что значительно осложняет их механи­ческую обработку.

Порошковые магнитотвердые материалы (постоянные магниты).Порошковые магнитотвердые материалы применяют для изготов­ления миниатюрных постоянных магнитов сложной формы. Их подразделяют на металлокерамические, металлопластические, ок­сидные и микропорошковые.

Прочие магнитотвердые материалы.К этой группе относятся материалы, которые имеют узкоспециальное применение: пласти­чески деформируемые сплавы, эластичные магниты, материалы для магнитных носителей информации, жидкие магниты.

 








Дата добавления: 2015-10-19; просмотров: 1273;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.