Этап С.

Для вывода итогового сообщения о результате решения используется диалоговое окно «Результаты поиска реше­ния».

Диалоговое окно «Результаты поиска решения» содер­жит следующие поля:

«Сохранить найденное решение» - служит для сохранения найденного решения во влияющих ячейках модели.

«Восстановить исходные значения» — служит для восста­новления исходных значений влияющих ячеек моде­ли.

«Отчеты» — служит для указания типа отчета, размещаемо­го на отдельном листе книги.

«Результаты» - используется для создания отчета, состоя­щего из целевой ячейки и списка влияющих ячеек модели, их исходных и конечных значений, а также формул ограничений и дополнительных сведений о наложенных ограничениях.

«Устойчивость» - используется для создания отчета, содер­жащего сведения о чувствительности решения к ма­лым изменениям в формуле (поле «Установить целе­вую ячейку», диалоговое окно «Поиск решения») или в формулах ограничений.

«Ограничения» - используется для создания отчета, состоя­щего из целевой ячейки и списка влияющих ячеек модели, их значений, а также нижних и верхних границ. Такой отчет не создается для моделей, зна­чения в которых ограничены множеством целых чи­сел. Нижним пределом является наименьшее значе­ние, которое может содержать влияющая ячейка, в то время как значения остальных влияющих ячеек фиксированы и удовлетворяют наложенным ограни­чениям. Соответственно, верхним пределом называ­ется наибольшее значение.

«Сохранить сценарий» — служит для отображения диало­гового окна Сохранение сценария, в котором мож­но сохранить сценарий решения задачи, чтобы ис­пользовать его в дальнейшем с помощью диспетчера сценариев MS Excel.

Одной из возможных задач и моделей линейной оптимизации является задача о планировании производства.

Предприятие должно производить изделия видов: , причем количество каждого выпускаемого изделия не должно превысить спрос и одновременно не должно быть меньше за­планированных величин соответственно. На изготовление изделий идет m видов сырья , за­пасы которых ограничены соответственно величинами Известно, что на изготовление i-ro изделия идет единиц j-го сырья. Прибыль, получаемая от реализации изделий равна соответственно . Требуется так спланировать производство из­делий, чтобы прибыль была максимальной и при этом выполнялся план на производство каждого изделия, но не превышался спрос на него.

 

Аналитическая математическая модель. Обозначим через ко­личества единиц изделий , выпускаемых пред­приятием. Прибыль, приносимая планом (целевая функ­ция), будет равна:

.

Ограничения на выполнение плана запишется в виде: для . Чтобы не превысить спрос, надо ограничить выпуск изделий: для . И, на­конец, ограничения на сырье запишутся в виде системы неравенств:

при условии, что неотрицательны.

 








Дата добавления: 2015-10-13; просмотров: 705;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.