Свойства криволинейного интеграла второго рода

1) Криволинейный интеграл при перемене направления кривой меняет знак.

2)

3)

4)

5) Криволинейный интеграл по замкнутой кривой L не зависит от выбора начальной точки, а зависит только от направления обхода кривой.

Направление обхода контура L задается дополнительно. Если L – замкнутая кривая без точек самопересечения, то направление обхода контура против часовой стрелки называется положительным.

6) Если АВ – кривая, лежащая в плоскости, перпендикулярной оси ОХ, то

Аналогичные соотношения справедливы при интегрировании по у и z.

Теорема. Если кривая АВ – кусочно- гладкая, а функции P(x, y, z), Q(x, y, z) и

R(x, y, z) – непрерывны на кривой АВ, то криволинейные интегралы

существуют.

Вычисление криволинейных интегралов второго рода производится путем преобразования их к определенным интегралам по формулам:

В случае, если АВ – плоская кривая, заданная уравнением y = f(x), то

Пример. Вычислить криволинейный интеграл . L – контур, ограниченный параболами . Направление обхода контура положительное.

Представим замкнутый контур L как сумму двух дуг L1 = x2 и

12.9 Формула Остроградского–Грина

Остроградский Михаил Васильевич (1861–1862) — русский математик.

Джордж Грин (1793–1841) — английский математик.

Иногда эту формулу называют формулой Грина, однако, Дж. Грин предложил в 1828 году только частный случай формулы.

Формула Остроградского–Грина устанавливает связь между криволинейным интегралом и двойным интегралом, т.е. дает выражение интеграла по замкнутому контуру через двойной интеграл по области, ограниченной этим контуром.

Будем считать, что рассматриваемая область односвязная, т.е. в ней нет исключенных участков.

y

y = y2(x)

D

A

C

B

y= y1(x)

 

0 x1 x2 x

 

Если замкнутый контур имеет вид, показанный на рисунке, то криволинейный интеграл по контуру L можно записать в виде:

Если участки АВ и CD контура принять за произвольные кривые, то, проведя аналогичные преобразования, получим формулу для контура произвольной формы:

Эта формула называется формулой Остроградского–Грина.

Формула Остроградского –Грина справедлива и в случае многосвязной области, т.е. области, внутри которой есть исключенные участки. В этом случае правая часть формулы будет представлять собой сумму интегралов по внешнему контуру области и интегралов по контурам всех исключенных участков, причем каждый из этих контуров интегрируется в таком направлении, чтобы область D все время оставалась по левую сторону линии обхода.

Пример. Решим пример, рассмотренный выше, воспользовавшись формулой Остроградского – Грина.

Формула Остроградского –Грина позволяет значительно упростить вычисление криволинейного интеграла.

Криволинейный интеграл не зависит от формы пути, если он вдоль всех путей, соединяющих начальную и конечную точку, имеет одну и ту же величину.

Условием независимости криволинейного интеграла от формы пути равносильно равенству нулю этого интеграла по любому замкнутому контуру, содержащему начальную и конечную точки.

Это условие будет выполняться, если подынтегральное выражение является полным дифференциалом некоторой функции, т.е. выполняется условие тотальности.








Дата добавления: 2015-10-13; просмотров: 855;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.