Векторное произведение векторов и его свойства

 

Три некомпланарных вектора , и , взятые в указанном порядке, образуют правую тройку, если с конца третьего вектора кратчайший поворот от первого вектора ко второму вектору виден совершающимся против часовой стрелки, и левую, если по часовой.

правая тройка, левая тройка

Определение. Векторным произведением вектора на вектор называется вектор , который:

1) перпендикулярен векторам и , т.е. и ;

2) имеет длину, численно равную площади параллелограмма, построенного на векторах и как на сторонах, т.е.

, где ;

3) векторы , и образуют правую тройку.

Векторное произведение обозначается или .

Из определения векторного произведения непосредственно вытекают следующие соотношения между ортами , и :

, , .

 








Дата добавления: 2015-10-13; просмотров: 674;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.