Мінори та алгебраїчні доповнення

Нехай визначник має n рядків і n стовпців.

Означення 10. Мінором k-го порядку k [1; n–1] називається визначник, утворений з елементів, розміщених на перетині будь-яких k рядків і k стовпців визначника. Зрозуміло, що мінор першого порядку — це будь-який елемент визначника.

Приклад. Утворити кілька мінорів другого і один мінор третього порядку такого визначника:

.

, , , ... , .

Мінори , , другого порядку утворюються з елементів, розміщених на перетині першого, другого рядків; першого, другого стовпців; третього, четвертого рядків; першого, третього стовпців; другого, четвертого рядків; третього, четвертого стовпців. Мінор третього порядку утворюється з елементів, розміщених на перетині другого, третього, четвертого рядків і першого, третього, четвертого стовпців.

Верхній індекс означає нумерацію мінорів; нижній індекс — порядок мінора.

Означення 11. Доповняльним мінором для мінора k-го порядку називається такий мінор, який лишається у визначнику після викреслювання тих k рядків і тих k стовпців, на перетині яких містяться елементи, що утворили мінор k-го порядку.

Нехай мінор k-го порядку утворено з елементів, розміщених на перетині i1, i2, ..., ik рядків і j1, j2, ..., jk стовпців.

Означення 12. Алгебраїчним доповненнямдо мінора k-го порядку є допов-
няльний мінор (nk)-го порядку, узятий зі знаком , де Якщо сума номерів рядків і стовпців парна, то береться знак «+», якщо непарна — то знак «–».

Далі важливу роль відіграватиме алгебраїчне доповнення до мінора першого порядку. Нехай — будь-який елемент-мінор першого порядку у визначнику n-го порядку, тоді буде алгебраїчним доповненням до мінора . Тут — доповняльний мінор (n–1)-го порядку, утворений викреслюванням
i-рядка і j-стовпця в початковому визначнику n-го порядку.








Дата добавления: 2015-10-05; просмотров: 1310;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.