Мінори та алгебраїчні доповнення
Нехай визначник має n рядків і n стовпців.
Означення 10. Мінором k-го порядку k [1; n–1] називається визначник, утворений з елементів, розміщених на перетині будь-яких k рядків і k стовпців визначника. Зрозуміло, що мінор першого порядку — це будь-який елемент визначника.
Приклад. Утворити кілька мінорів другого і один мінор третього порядку такого визначника:
.
, , , ... , .
Мінори , , другого порядку утворюються з елементів, розміщених на перетині першого, другого рядків; першого, другого стовпців; третього, четвертого рядків; першого, третього стовпців; другого, четвертого рядків; третього, четвертого стовпців. Мінор третього порядку утворюється з елементів, розміщених на перетині другого, третього, четвертого рядків і першого, третього, четвертого стовпців.
Верхній індекс означає нумерацію мінорів; нижній індекс — порядок мінора.
Означення 11. Доповняльним мінором для мінора k-го порядку називається такий мінор, який лишається у визначнику після викреслювання тих k рядків і тих k стовпців, на перетині яких містяться елементи, що утворили мінор k-го порядку.
Нехай мінор k-го порядку утворено з елементів, розміщених на перетині i1, i2, ..., ik рядків і j1, j2, ..., jk стовпців.
Означення 12. Алгебраїчним доповненнямдо мінора k-го порядку є допов-
няльний мінор (n–k)-го порядку, узятий зі знаком , де Якщо сума номерів рядків і стовпців парна, то береться знак «+», якщо непарна — то знак «–».
Далі важливу роль відіграватиме алгебраїчне доповнення до мінора першого порядку. Нехай — будь-який елемент-мінор першого порядку у визначнику n-го порядку, тоді буде алгебраїчним доповненням до мінора . Тут — доповняльний мінор (n–1)-го порядку, утворений викреслюванням
i-рядка і j-стовпця в початковому визначнику n-го порядку.
Дата добавления: 2015-10-05; просмотров: 1310;