Сложение гармоническихколебаний одного направления и одинаековой частоты
Гармонические колебания одинакового направления и частоты удобно складывать, изобразив колебания в виде векторов на плоскости - графически.
1). Выберем некоторую направленную прямую - ось, вдоль которой будем откладывать колеблющуюся величину x .
2). Из взятой на оси некоторой точки О отложим направленный отрезок - вектор длины A, образующий с осью угол некоторый α .
3). Вращая вектор А вокруг точки О с угловой скоростью ω 0 , получим, что проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени: проекция конца вектора будет перемещаться по оси x, принимая значения от - А до + A , а координата этой проекции будет изменяться со временем по закону
Схему, полученную таким методом представления колебаний, называют векторной диаграммой .
Колеблющееся тело может принимать участие в нескольких колебательных процессах, тогда следует найти результирующее колебание, другими словами, колебания необходимо сложить. В данном разделе будем складывать гармонические колебания одного направления и одинаковой частоты
применяя метод вращающегося вектора амплитуды, построим графически векторные диаграммы этих колебаний (рисунок).
Taк как векторы A1 и A2 вращаются с одинаковой угловой скоростью ω0, то разность фаз (φ2 - φ1) между ними будет оставаться постоянной. Значит, уравнение результирующего колебания будет
(1)
В формуле (1) амплитуда А и начальная фаза φ соответственно определяются выражениями
Значит, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает при этом также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2 - φ1) складываемых колебаний.
Исследуем выражение для амплитуды А в зависимости от разности фаз (φ2 - φ1):
1) φ2 - φ1 = ±2mπ (m = 0, 1, 2, ...), тогда A=A1+A2, т. е. амплитуда результирующего колебания А будет равна сумме амплитуд складываемых колебаний;
2) φ2 - φ1 = ±(2m+1)π (m = 0, 1, 2, ...), тогда A=|A1–A2|, т. е. амплитуда результирующего колебания будет равна разности амплитуд складываемых колебаний.
Дата добавления: 2015-10-05; просмотров: 779;