Основные формулы. где – модуль силы взаимодействия двух точечных зарядов и ; – расстояние между зарядами; - электрическая постоянная; -диэлектрическая проницаемость
· Закон Кулона:
где – модуль силы взаимодействия двух точечных зарядов и ; – расстояние между зарядами; - электрическая постоянная; -диэлектрическая проницаемость среды, в которой находятся заряды (для вакуума ).
· Напряженность и потенциал электростатического поля:
, , или ,
где – сила, действующая на точечный положительный заряд , помещенный в данную точку поля; – потенциальная энергия заряда ; – работа по перемещению заряда из данной точки поля в бесконечность.
· Напряженность и потенциал электростатического поля, создаваемого точечным зарядом на расстоянии от него
; .
· Поток вектора напряженности через площадку :
,
где – вектор, модуль которого равен , а направление совпадает с нормалью к площадке; – составляющая вектора по направлению нормали к площадке.
· Поток вектора напряженности через произвольную поверхность :
.
· Напряженность и потенциал поля, создаваемого системой точечных зарядов (принцип суперпозиции (наложения) электростатических полей):
; ,
где , – соответственно напряженность и потенциал поля, создаваемого зарядом , – число зарядов, создающих поле.
· Связь между напряженностью и потенциалом электростатического поля:
, или ,
где , , – единичные векторы координатных осей.
· В случае поля, обладающего центральной или осевой симметрией:
.
· Для однородного поля (поля плоского конденсатора):
,
где – разность потенциалов между пластинами конденсатора, – расстояние между ними.
· Электрический момент диполя (дипольный момент):
,
где – плечо диполя (векторная величина, направленная от отрицательного заряда к положительному).
· Линейная, поверхностная и объемная плотность зарядов, т.е. заряд, приходящийся соответственно на единицу длины, площади и объема:
; ; .
· Теорема Гаусса для электростатического поля в вакууме:
,
где – алгебраическая сумма зарядов, заключенных внутри замкнутой поверхности ; – число зарядов; – объемная плотность зарядов.
· Напряженность поля, создаваемая равномерно заряженной бесконечной плоскостью:
.
· Напряженность и потенциал поля, создаваемого проводящей заряженной сферой радиусом с зарядом на расстоянии от центра сферы:
; при (внутри сферы);
; при (вне сферы).
· Напряженность поля, создаваемого равномерно заряженной бесконечной цилиндрической поверхностью радиусом на расстоянии от оси цилиндра:
при (внутри цилиндра);
при (вне цилиндра).
· Работа, совершаемая силами электростатического поля при перемещении заряда из точки 1(потенциал ) в точку 2 (потенциал ):
, или ,
где – проекция вектора на направление элементарного перемещения .
· Вектор поляризации диэлектрика:
,
где – объем диэлектрика; – дипольный момент -й молекулы, – число молекул.
· Связь между вектором поляризации и напряженностью электростатического поля в той же точке внутри диэлектрика:
æ ,
где æ – диэлектрическая восприимчивость вещества.
· Связь диэлектрической проницаемости с диэлектрической восприимчивостью æ:
= 1 + æ.
· Связь между напряженностью поля в диэлектрике и напряженностью внешнего поля:
.
· Связь между векторами электрического смещения и напряженности электростатического поля:
.
· Связь между векторами , и :
.
· Теорема Гаусса для электростатического поля в диэлектрике:
,
где – алгебраическая сумма заключенных внутри замкнутой поверхности свободных электрических зарядов; – составляющая вектора по направлению нормали к площадке ; – вектор, модуль которого равен , а направление совпадает с нормалью к площадке. Интегрирование ведется по всей поверхности.
· Электроемкость уединенного проводника и конденсатора:
, ,
где – заряд, сообщенный проводнику; – потенциал проводника;
– разность потенциалов между пластинами конденсатора.
· Электроемкость плоского конденсатора:
,
где – площадь пластины конденсатора; – расстояние между пластинами.
· Электроемкость батареи конденсаторов: при последовательном (а) и параллельном (б) соединениях:
а) , б) ,
где – электроемкость -го конденсатора; – число конденсаторов.
· Энергия уединенного заряженного проводника:
.
· Потенциальная энергия системы точечных зарядов:
,
где – потенциал, создаваемый в той точке, где находится заряд , всеми зарядами, кроме -го, - число зарядов.
· Энергия заряженного конденсатора:
,
где – заряд конденсатора; – его электроёмкость; – разность потенциалов между обкладками.
· Сила притяжения между двумя разноименно заряженными обкладками плоского конденсатора:
.
· Энергия электростатического поля плоского конденсатора:
,
где – площадь одной пластины; – разность потенциалов между пластинами; – объем области между пластинами конденсатора.
· Объемная плотность энергии электростатического поля:
,
где – напряжённость поля, – электрическое смещение.
Дата добавления: 2015-09-28; просмотров: 882;