Влияние дефектов кристаллической решетки на прочность металла
Теоретически прочность железа должна составлять 130000 МПа, а фактически она равна 250 МПа. Это связано с тем, что деформация осуществляется не одновременным смещением плоскостей атомов, а постепенным перемещением дислокаций. В результате своей трансформации она выходит на поверхность кристалла и исчезает. При ограниченной плотности искажений кристаллической решетки сдвиг происходит тем легче, чем больше дислокаций в объеме металла. Они могут воздействовать друг на друга, вызывая взаимное уничтожение себя самих. Чем выше плотность дислокаций, тем больше затруднено их движение. В результате требуется приложение большей нагрузки, что вызывает упрочнение металла. Увеличение стойкости можно вызвать наклепом, термической и термомеханической обработкой.
Дислокации служат местом концентрации примесных ядер, в особенности примесей внедрения, так как это уменьшает искажения решетки. Примесные ядра образуют вокруг дислокации зону повышенной концентрации – так называемую атмосферу Коттрела, которая мешает движению дислокаций и упрочняет металл. Особенно велико влияние дислокаций на прочность кристаллов. Благодаря подвижным дислокациям экспериментально определенный предел текучести металлов в 1000 раз меньше теоретического значения. При значительном увеличении плотности дислокаций и уменьшении их подвижности прочность увеличивается в несколько раз по сравнению с отожженным состоянием. Прочность бездефектных участков (в том числе, длинных и тонких «усов», полученных кристаллизацией из газовой фазы), приближается к теоретической.
В полупроводниках дислокации влияют на электрические и другие свойства, снижают электросопротивление, уменьшают время жизни носителей. Особенно значение дислокаций возрастает в микроэлектронике, где применяются тонкие пленочные кристаллы и дислокации играют роль мелких проводящих каналов, вдоль которых легко перемещаются примесные ядра.
Дата добавления: 2015-09-21; просмотров: 1649;