V Пример. В выражении x + y = y + x, представляющем собой закон перестановочности сложения, переменные x и y употреблены в интерпретации всеобщности
В выражении x + y = y + x, представляющем собой закон перестановочности сложения, переменные x и y употреблены в интерпретации всеобщности, так как это соотношение истинно при любых значениях x и y. Другую ситуацию имеем в том случае, когда переменные входят в состав, например, математических уравнений. Так, в выражении x + 5 = 8 переменная x уже не используется в интерпретации всеобщности, так как не обозначает произвольный объект из универсума. Напротив, возможные значения для x строго фиксированы, т. е. ограничены условием данного утверждения. В этом случае говорят, что переменная использована в условной интерпретации.
Используя вышеозначенный перечень и истолкование правил вывода, обратим внимание на тот факт, что понятия вывода и доказательства в классической логике предикатов остаются формально теми же, что и в классической логике высказываний, поэтому в логике предикатов работают все правила вывода логики высказываний, но к ним добавляются правила квантификации. По этим же причинам в качестве эвристик в исчислении логики предикатов используются все эвристики исчисления логики высказываний, но к ним добавляется ещё одна, четвёртая эвристика. 4-я эвристика заключается в применении 1-й и 2-й эвристик для выбора посылок после того, как применение всех шагов по первой эвристике привело к формуле вида "xA или $xA.
Дата добавления: 2015-09-07; просмотров: 539;