V Пример. Пусть формула A(x) является записью выражения $x(P2(x,y)ÉQ2(x,z))

Пусть формула A(x) является записью выражения $x(P2(x,y)ÉQ2(x,z)). Допустим, что универсумом рассуждения является множество городов, вместо свободной переменной y подставляется терм — предметная постоянная, имеющая значение «Омск», вместо z — предметная постоянная, имеющая значение «Тара», и P2 — предикаторная постоянная, имеющая значение «старше», а Q2 — предикаторная постоянная, имеющая значение «моложе», тогда мы получаем правильную подстановку, поскольку суждение «Существуют города, такие что они старше Омска, но моложе Тары» истинно.

 

Но в силу того, что рассматриваемая формула $x(P2(x,y)ÉQ2(x,z)), являясь выполнимой, не является общезначимой формулой логики предикатов, можно осуществить и такую подстановку термов вместо свободных переменных yи z, что данная формула будет иметь всегда ложное значение. Допустим, что универсумом рассуждения является множество людей, вместо свободной переменной y подставляется сложный функциональный терм, имеющий значение «являться отцом человека», вместо z — сложный функциональный терм, имеющий значение «являться предком человека», и P2 — предикаторная постоянная, имеющая значение «младше», а Q2 — предикаторная постоянная, имеющая значение «старше», тогда получаем неправильную подстановку, поскольку суждение «Существуют люди, такие что они старше отцов, но моложе потомков» является ложным всегда. В данном случае свободно входящая в подставляемые сложные функциональные термы переменная «человек» оказалась в результате этой подстановки связанной (попала в область действия квантора), что обусловило семантическую некорректность формулы. Правильной называется такая подстановка терма t вместо всех свободных вхождений предметной переменной x формулыА(x), при которой ни одна входящая в этот терм переменная не окажется связанной на местах, где этот терм появляется в результате подстановки. Запись А(x/ y, z1, …, zn) в правилах «введения квантора общности» и «исключения квантора существования» есть фиксация частного случая правильной подстановки предметной переменной y на место всех свободных вхождений предметной переменной x в выражении А(x, z1, …, zn). Содержащиеся в правилах «введения квантора общности» и «исключения квантора существования» указания вида «y — абсолютное ограничение; z1, …, zn — ограничение» обусловлены тем, что с содержательной точки зрения свободные предметные переменные являются пробегающими по универсуму рассуждения (некоторого множества предметов), принимая в выбранном универсуме любые значения (в таком случае они используются в интерпретации всеобщности). Но будучи включёнными в состав формул логики предикатов предметные переменные иногда не выполняют данную роль, поскольку не выступают в качестве знаков, обозначающих именно любой объект универсума рассуждения (т. е. используются в интерпретации всеобщности). Таким образом, имеют место два возможных случая функционирования предметной переменной в составе формул. Свободная индивидная переменная используется в формуле в интерпретации всеобщности тогда и только тогда, когда в составе этой формулы данная предметная переменная трактуется как знак, обозначающий любой объект из универсума рассуждения.

 








Дата добавления: 2015-09-07; просмотров: 606;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.