СТАРЕНИЕ И ДЕСТРУКЦИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
Эксплуатационные условия, в которых могут находиться пластмассы, полимерные изделия и конструкции, защитные покрытия, не всегда бывают благоприятными для устойчивого состояния материала. Трубопроводы в грунте, полы в цехах химических предприятий, антикоррозионные покрытия в морских гидротехнических сооружениях, пленочное экранирование водохранилищ, тентовые конструкции, облицовки кислотных емкостей из железобетона и т. п. — лишь отдельные примеры таких условий работы конструкций и изделий. В сложных эксплуатационных условиях изделия и конструкции из полимерных материалов или изготовленных на их основе (пластмассы, полимеррастворы и полимербетоны) вступают в контакт с газообразными и жидкими агрессивными средами, подвергаются не только механическим напряжениям, но и воздействию тепловой энергии, ветра, солнечной радиации, кислорода и озона, влажного воздуха, паров растворителей или других жидкостей. Ускоренное протекание процессов деструкции и старения полимеров обусловлено совмещением действия активных внешних факторов с механическими напряжениями в материале, особенно на растяжение.
Под воздействием различных активных факторов и при высокой для данного материала температуре могут развиваться в полимере процессы окисления и деструкции с разрывом макромолекул по длине цепи, отрывом отдельных или групп атомов от ее звеньев. Так, например, под влиянием озона возникают функциональные группы — гидроксилы, карбоксилы. Они являются своеобразными предвестниками начинающейся химической деструкции:
Под влиянием озона возникает
В реакциях деструкции полимеров характерным является снижение молекулярной массы и выделение летучих продуктов — хлористого водорода, оксида и диоксида углерода и др. К наиболее слабым частям молекул, способным реагировать с воздействующей средой, относятся двойные связи и активные в химическом отношении радикалы.
Изменение структуры большинства полимерных материалов связано с влиянием светового облучения, например активной части солнечной радиации (длина волн 30—36∙10-8 м), действием ультрафиолетовых лучей, особенно при свободном доступе воздуха, повышенных температурах и длительном механическом напряжении под воздействием разрывных усилий. Характер соответствующих изменений в материале может выражаться в деструкции (расщеплении макромолекул), возможно с побочными явлениями — выделением газов, паров пластификатора, увеличением (или уменьшением) двойных связей, что усиливает реакционную способность и обусловливает неустойчивую структуру. Характер изменений в материале может выражаться также в дополнительном структурировании, например химическом «сшивании» под воздействием ионизирующих излучений. Операции деструкции и химического «сшивания» нередко протекают одновременно, хотя может превалировать одна из них. Установлено, что если полимерные материалы подвергались действию радиации, то практически нельзя устранить изменения их механических свойств, поскольку возникают и развиваются химические необратимые реакции. Если в полимере имелся пластификатор, то под влиянием его частичного испарения нарастает жесткость изделий во времени и понижается их морозостойкость.
Недостатком материалов на основе полимеров нередко является способность этих связующих поглощать воду при длительном контакте, набухать со снижением прочности, упругости и ухудшением других качественных характеристик. Отдельные полимеры при действии воды, особенно слабощелочной или слабокислой, подвержены гидролизу с последующим вымыванием продуктов гидролиза, что повышает пористость. Большинство полимеров (и полимербетонов) имеет пониженную водостойкость, повышенную усадку; не всегда полезен их высокий коэффициент температурного расширения.
Деструктивные явления и процессы старения рассмотрены ниже в отношении ряда термопластичных и термореактивных полимеров.
Полиэтилен высокого и низкого давления, широко употребляемый в строительстве, характеризуется в целом высокой стойкостью при температурах до 60°С, но он не стоек к действию окислителей при повышенных температурах. Вода не вступает с этим аполярным полимером в химические взаимоотношения и не пластифицирует его, но в среде ПАВ (например, эмульгатора ОП-10) наблюдается значительное увеличение поглощения водной среды. Полиэтилен подвержен старению и окислительному разрушению под действием активной части солнечной радиации, ионизирующего излучения. После облучения этот полимер полностью теряет способность растворяться в органических растворителях, приобретает упругость, причем модуль упругости может увеличиться на 200—250% с нарастанием и его хрупкости. Эти изменения свойств могут отражать образование поперечных связей («сшивок»), хотя в кристаллизованном полиэтилене между цепями молекул всегда действуют слабые ван-дер-ваальсовы силы.
Полиизобутилен стоек к действию минеральных кислот, концентрированных едких щелочей. Однако под влиянием ароматических и хлорированных углеводородов он сравнительно легко растворяется с потерей исходных физико-механических свойств.
Поливинилхлорид и его сополимеры с винилацетатом характеризуются высокой стойкостью к кислым и щелочным средам. Трубы из поливиншгхлорида успешно используют для транспортирования агрессивных жидкостей при температуре от -15 до +60°С. Но и этот полимер, а также полистирол с его высокой способностью сохранять твердость при повышении температуры (температура плавления его 230°С) не проявляют стойкости при солнечном облучении и быстро стареют, набирают хрупкость.
Полиэфирные полимеры имеют высокую стойкость к большинству кислот любой концентрации до температуры 80°С, к сульфатам, хлоридам, спиртам, нефтепродуктам. Но они подвержены коррозионному воздействию азотной, уксусной и муравьиной кислот. Они не проявляют достаточной стойкости к едким щелочам, к некоторым средним и особенно кислым солям, например к углекислому калию, сернокислому натрию.
Эпоксидные и фурановые полимеры не отличаются высокой химической стойкостью к воздействию сильных окислителей. Производные от них, например эпоксидно-фурановые материалы, имеют слабую химическую сопротивляемость к уксусной и молочной кислотам.
Остаются весьма сложными условиями для большинства полимеров: работа при температуре ниже их температуры хрупкости, когда разрушение материала может наступить мгновенно (см. 5.2). Стабилизации структуры, повышения стойкости полимеров к деструкции и старению достигают различными технологическими и эксплуатационными мероприятиями общего и специфического характера. Сравнительно общим способом торможения деструкции при воздействии света и облучений является введение химических реагентов (соединений), способных поглощать ультрафиолетовые и другие лучи, не подвергаясь сами фотосинтезу или изменениям. К таким реагентам относятся, например, для стабилизации полиэтилена и др. — бензотриазол, тинувин, хлористый марганец и т. п. Другой способ — введение светоотражающих добавок, например алюминиевой пудры. В полимеры вводят также антиоксиданты, наполнители, стабилизаторы и др. В эксплуатационный период приносят пользу меры нанесения мастик, эмалей, паст на лиофобной основе для изоляции.
Глава 12
Дата добавления: 2015-09-18; просмотров: 2253;