Атомная энергетика, атомные электрические станции (АЭС)
История атомной энергетики охватывает период менее полувека, и к настоящему времени доля выработки электроэнергии на АЭС во многих странах достигала достаточно больших значений.
Атомные электростанции (АЭС)в качестве топлива используют уран. Он легко транспортабелен, что исключает зависимость АЭС от топливно-энергетического фактора. Установки ориентированы на потребителей и расположены в районах с ограниченными энергетическими ресурсами или напряженным топливно-энергетическим балансом. Количество теплоты, полученное при расходе 1 кг урана (U235), равно получаемому при сжигании 2,5 т лучшего угля.
В настоящее время в мире работает 436 АЭС. Установленная мощность АЭС в США составляет 90 млн. кВт, в России – более 22 млн. кВт.
Рис. 3.8. Доля выработки электроэнергии на АЭС в общей выработке в некоторых странах мира в 1992 г.
На рис. 3.8 показаны гистограммы абсолютной суммарной выработки электроэнергии, а также доли выработки на АЭС для различных стран мира. Хотя эти данные относятся к 1992 г., они отражают с достаточной точностью положение и в настоящее время. Определенные отклонения могут быть только для небольших стран, где ввод даже одного энергоблока на АЭС мощностью 1 млн. кВт может существенно изменить ситуацию.
Главенствующее положение по доле выработки электроэнергии на АЭС занимает Франция, а по абсолютному производству электроэнергии на АЭС она уступает лишь США.
Россия вырабатывала на АЭС в 1992 г. около 12 % электроэнергии, сейчас эта цифра достигла примерно 15 %. Почти все АЭС России сконцентрированы в европейской части, где имеется серьезный дефицит органического топлива. И если оценить долю выработки АЭС для европейской части России, то она достигает примерно 30 %. Еще большее значение АЭС имеют в некоторых регионах: в Северо-Западном регионе России они обеспечивают 40 % энергопотребления, а в Центрально-Черноземном – более 60 %.
В настоящее время в России работает 10 АЭС, структура установленной мощности которых приведена в таблице 3.2
Таблица 3.2. Структура АЭС России
АЭС | Суммарная мощность, МВт | Структура установленной мощности | Тип реактора |
Балаковская | 4 энергоблока по 1000 МВт | ВВЭР-1000 | |
Нововоронежская | 2 энергоблока по 440 МВт 1 энергоблок 1000 МВт | ВВЭР-440 ВВЭР-1000 | |
Кольская | 4 энергоблока по 440 МВт | ВВЭР-440 | |
Ростовская | 1 энергоблок 1000 МВт | ВВЭР-1000 | |
Калининская | 2 энергоблока по 1000 МВт | ВВЭР-1000 | |
Ленинградская | 4 энергоблока по 1000 МВт | РБМК-1000 | |
Смоленская | 3 энергоблока по 1000 МВт | РБМК-1000 | |
Курская | 4 энергоблока по 1000 МВт | РБМК-1000 | |
Билибинская | 4 энергоблока по 12 МВт | ЭГП-6 | |
Белоярская | 1 энергоблок 600 МВт | БН-600 |
Главное отличие АЭС от ТЭС состоит в использовании ядерного горючего вместо органического топлива. Ядерное горючее получают из природного урана, который добывают либо в шахтах (Франция, Нигер, ЮАР), либо в открытых карьерах (Австралия, Намибия), либо способом подземного выщелачивания (США, Канада, Россия). Природный уран – это смесь в основном неделящегося изотопа урана 238U (более 99 %) и делящегося изотопа 235U (0,71 %), который соответственно и представляет собой ядерное горючее. Для работы реакторов АЭС требуется обогащение урана. Для этого природный уран направляется на обогатительный завод, после переработки на котором 90 % природного обедненного урана направляется на хранение, а 10 % приобретают обогащение до нескольких процентов (3,3– 4,4 % для энергетических реакторов).
Рис. 3.9. Превращения ядерного горючего в топливном цикле
(для водо-водяного реактора ВВЭР -1000)
Обогащенный уран (точнее – диоксид урана) направляется на завод, изготавливающий твэлы – тепловыделяющие элементы. Из диоксида урана изготавливают цилиндрические таблетки диаметром около 9 мм и высотой 15– 30 мм. Эти таблетки помещают в герметичные тонкостенные циркониевые трубки длиной почти в 4 м. Это и есть твэлы. Твэлы собирают в тепловыделяющие сборки (ТВС) по несколько сотен штук, которые удобно помещать и извлекать из активной зоны реактора.
Все дальнейшие процессы «горения» – расщепления ядер 235U с образованием осколков деления, радиоактивных газов, распуханием таблеток и т.д. происходят внутри трубки твэла, герметичность которой должна быть гарантирована.
После постепенного расщепления 235U и уменьшения его концентрации до 1,26 %, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора, некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.
Таким образом, в отличие от ТЭС, где топливо сжигается полностью (по крайней мере, к этому стремятся), на АЭС добиться 100 % расщепления ядерного горючего невозможно. Отсюда – невозможность оценивать КПД АЭС с помощью удельного расхода условного топлива. Здесь же подчеркнем, что АЭС не использует воздух для окисления топлива, отсутствуют какие-либо выбросы золы, оксидов серы, азота, углерода и так далее, характерных для ТЭС. Мало того, даже радиоактивный фон вблизи АЭС меньше, чем у ТЭС (этот фон создается элементами, содержащимися в золе). Результатом деления ядер расщепляющихся элементов в ядерном реакторе является выделение огромного количества тепла, которое используется для получения пара. Принцип работы АЭС приведен на рис. 3.10. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.
Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).
Помимо воды, в различных реакторах в качестве теплоносителя могут применяться также расплавы металлов: натрий, свинец, эвтектический сплав свинца с висмутом и др. Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферное), избавиться от компенсатора давления.
В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.
Рис. 3.10. Принцип работы атомной электростанции (ВВЭР)
Таким образом, ядерный реактор АЭС – это аналог парового котла в ПТУ ТЭС. Сама ПТУ АЭС принципиально не отличается от ПТУ ТЭС: она также содержит паровую турбину, конденсатор, систему регенерации, питательный насос, конденсатоочистку. Так же, как и ТЭС, АЭС потребляет громадное количество воды для охлаждения конденсаторов.
Принципиальная схема ядерного реактора на так называемых тепловых (медленных) нейтронах показана на рис. 3.11. Перед тем, как перейти к описанию его работы, напомним, что расщепление ядра делящегося элемента происходит вследствие попадания в него нейтрона. При этом возникают движущиеся с большой скоростью осколки деления (ядра других элементов) и 2–3 новых нейтрона. Последние способны вызывать деление новых ядер и характер дальнейшего процесса будет зависеть от характера изменения баланса нейтронов. Если из образующихся после каждого акта расщепления ядра 2–3 нейтронов, 1–2 нейтрона будут «погибать» (т.е. не вызывать акта следующего деления), то оставшийся и расщепивший следующее ядро 1 нейтрон будет постоянно «поддерживать» их существование.
Рис.3.11. Принципиальная схема ядерного реактора
1 – управляющие стрежни; 2 – защита; 3 – отражатель;
4 – замедлитель; 5 – ядерное топливо
Если, например, в некоторый начальный момент существовало 100 нейтронов, то при описанных выше условиях этот уровень нейтронов будет поддерживаться постоянным, и реакция деления будет носить стационарный характер. Если число нейтронов будет увеличиваться, то произойдет тепловой взрыв, если уменьшаться, то реакция прекратится (или перейдет на меньший уровень тепловыделения). Чем выше стационарный уровень числа существующих нейтронов, тем больше мощность реактора.
Образующиеся в результате деления нейтроны могут быть быстрыми (т.е. иметь большую скорость) и медленными (тепловыми). Вероятность захвата медленного нейтрона ядром и его последующего расщепления больше, чем быстрого нейтрона. Поэтому твэлы окружают замедлителем (обычно это вода, графитовая кладка и другие материалы). Быстрые нейтроны замедляются, и поэтому рассматриваемые ниже энергетические реакторы относятся к реакторам на медленных (тепловых) нейтронах.
Для уменьшения утечки нейтронов из реактора его снабжают отражателем. Обычно он делается из таких же материалов как и замедлитель. Изменяют мощность реактора с помощью стержней системы регулирования и защиты (СУЗ), выполненных из материалов хорошо поглощающих нейтроны. При опускании стержней поглощение нейтронов увеличивается, общее число нейтронов уменьшается, и мощность реактора также уменьшается вплоть до полной остановки.
Реактор окружается биологической защитой – кладкой из тяжелого бетона, предохраняющей персонал от воздействия медленных и быстрых нейтронов и ионизирующего излучения.
Количество стационарно существующих нейтронов определяет число образующихся осколков деления ядер, которые разлетаются в разные стороны с огромной скоростью. Торможение осколков приводит к разогреву топлива и стенок твэлов. Для снятия этого тепла в реактор подается теплоноситель, нагрев которого и представляет цель работы ядерного реактора. В наиболее распространенных типах ядерных реакторов в качестве теплоносителя используют обычную воду, естественно, высокого качества.
Практически вся мировая атомная энергетика базируется на корпусных реакторах. Как следует из самого названия, их главной особенностью является использование для размещения активной зоны толстостенного цилиндрического корпуса.
В свою очередь корпусные реакторы выполняют с водой под давлением (в английской транскрипции PWR – pressed water reactor, в русской ВВЭР – водо-водяной энергетический реактор), и кипящие (BWR – boiling water reactor). В водо-водяном реакторе циркулирует только вода под высоким давлением. В кипящем реакторе в его корпусе над поверхностью жидкости образуется насыщенный водяной пар, который направляется в паровую турбину. В России реакторы кипящего типа не строят. В корпусных реакторах и теплоносителем, и замедлителем является вода.
Альтернативой корпусным реакторам являются канальные реакторы, которые строили только в Советском Союзе под названием РБМК – реактор большой мощности канальный. Такой реактор представляет собой графитовую кладку с многочисленными каналами, в каждый из которых вставляется как бы небольшой кипящий реактор малого диаметра. Замедлителем в таком реакторе служит графит, а теплоносителем – вода.
В России работает 14 водо-водяных реакторов типа ВВЭР общей мощностью 10640 МВт и 11 канальных графитовых реакторов типа РБМК общей мощностью 11000 МВт. За рубежом реакторов канального типа, аналогичным РБМК, не строят.
Главное преимущество реакторов типа ВВЭР перед РБМК состоит в их большей безопасности. Это определяется тремя причинами:
· реактор ВВЭР принципиально не имеет так называемых положительных обратных связей, т.е. в случае потери теплоносителя и потери охлаждения активной зоны цепная реакция горения ядерного топлива затухает, а не разгоняется, как в РБМК;
· активная зона ВВЭР не содержит горючего вещества (графита), которого в активной зоне РБМК содержится около 2 тыс. т;
· реактор ВВЭР имеет защитную оболочку, не допускающую выхода радиоактивности за пределы АЭС даже при разрушении корпуса реактора; выполнить единый защитный колпак для РБМК невозможно из-за большой разветвленности труб реакторного контура.
Главным преимуществом АЭС перед любыми другими электростанциями является их практическая независимость от источников топлива, т.е. удаленности от месторождений урана и радиохимических заводов. Энергетический эквивалент ядерного топлива в миллионы раз больше, чем органического топлива, и поэтому, в отличие, скажем, от угля, расходы на его перевозку ничтожны. Это особенно важно для европейской части России, где доставка угля из Кузбасса и Сибири слишком дорога. Кроме того, замена выработки электроэнергии на газомазутных (фактически – газовых) ТЭС производством электроэнергии на АЭС – важный способ поддержания экспортных поставок газа в Европу.
Это преимущество трансформируется в другое: для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на газомазутных и тем более пылеугольных ТЭС. Достаточно сказать, что сейчас тарифы на закупку электроэнергии АЭС электрическими сетями на 40– 50 % ниже, чем для ГРЭС различного типа. Особенно заметно преимущество АЭС в части стоимости производимой электроэнергии стало заметно в начале 70-х годов, когда разразился энергетический кризис и цены на нефть на мировом рынке возросли в несколько раз. Падение цен на нефть, конечно, автоматически снижает конкурентоспособность АЭС.
Затраты на строительство АЭС находятся примерно на таком же уровне, как и на строительство пылеугольных ТЭС или несколько выше.
К недостаткам АЭС можно отнести трудности, связанные с захоронением ядерных отходов, катастрофические последствия аварий и тепловое загрязнение используемых водоемов.
Дата добавления: 2015-09-18; просмотров: 3291;