Тепловые электростанции (ТЭС, КЭС, ТЭЦ)

 

Основным типом электростанций в России являютсятепловые(ТЭС). Эти установки вырабатывают примерно 67% электроэнергии России. На их размещение влияют топливный и потребительский факторы. Наиболее мощные электростанции располагаются в местах добычи топлива. ТЭС, использующие калорийное, транспортабельное топливо, ориентированы на потребителей.

Тепловые электростанции используют широко распространенные топливные ресурсы, относительно свободно размещаются и способны вырабатывать электроэнергию без сезонных колебаний. Их строительство ведется быстро и связано с меньшими затратами труда и материальных средств. Но у ТЭС есть существенные недостатки. Они используют невозобновимые ресурсы, обладают низким КПД (30-35%), оказывают крайне негативное влияние на экологическую обстановку. ТЭС всего мира ежегодно выбрасывают в атмосферу 200-250 млн. т золы и около 60 млн. т сернистого ангидрида6, а также поглощают огромное количество кислорода. Установлено, что уголь в микродозах почти всегда содержит U238, Th232 и радиоактивный изотоп углерода. Большинство ТЭС России не оснащены эффективными системами очистки уходящих газов от оксидов серы и азота. Хотя установки, работающие на природном газе экологически существенно чище угольных, сланцевых и мазутных, вред природе наносит прокладка газопроводов (особенно в северных районах).

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

1. По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). ТЭЦпредставляют собой установки по комбинированному производству электроэнергии и теплоты. Их КПД доходит до 70% против 30-35% на КЭС. ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет 15-20 км. Максимальная мощность ТЭЦ меньше, чем КЭС.

Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн. кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы. Ниже рассматриваются только районные электростанции.

2. По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

Тепловые электростанции, работающие на органическом топливе, называют конденсационными электростанциями (КЭС). Ядерное горючее используют атомные электростанций (АЭС). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

Первостепенную роль среди тепловых установок играют конденсационные электростанции (КЭС). Они тяготеют и к источникам топлива, и к потребителям, и поэтому очень широко распространены. Чем крупнее КЭС, тем дальше она может передавать электроэнергию, т.е. по мере увеличения мощности возрастает влияние топливно-энергетического фактора.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Ориентация на топливные базы происходит при наличии ресурсов дешевого и нетранспортабельного топлива (бурые угли Канско-Ачинского бассейна) или в случае использования электростанциями торфа, сланцев и мазута (такие КЭС обычно связаны с центрами нефтепереработки). Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его дороговизны только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы высококалорийного каменного угля (антрацитовый штыб – АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

3. По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В России имеется только одна работающая ПГУ-ТЭЦ (ПГУ-450Т) мощностью 450 МВт. На Невинномысской ГРЭС работает энергоблок ПГУ-170 мощностью 170 МВт, а на Южной ТЭЦ Санкт-Петербурга – энергоблок ПГУ- 300 мощностью 300 МВт.

4. По технологической схеме паропроводов ТЭС делятся на блочные ТЭС и на ТЭС с поперечными связями.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по-другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

5. По уровню начального давления различают ТЭС докритического давления и сверхкритического давления (СКД).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам выполняются с промежуточным перегревом и по блочной схеме. Часто ТЭС или ТЭЦ строят в несколько этапов – очередями, параметры которых улучшаются с вводом каждой новой очереди.

Рассмотрим типичную конденсационную ТЭС, работающую на органическом топливе (рис. 3.1).

 

Рис. 3.1. Тепловой баланс газомазутной и

пылеугольной (цифры в скобках) ТЭС

 

Топливо подается в котел и для его сжигания сюда же подается окислитель – воздух, содержащий кислород. Воздух берется из атмосферы. В зависимости от состава и теплоты сгорания для полного сжигания 1 кг топлива требуется 10– 15 кг воздуха и, таким образом, воздух – это тоже природное «сырье» для производства электроэнергии, для доставки которого в зону горения необходимо иметь мощные высокопроизводительные нагнетатели. В результате химической реакции сгорания, при которой углерод С топлива превращается в оксиды СО2 и СО, водород Н2 – в пары воды Н2О, сера S – в оксиды SO2 и SO3 и т.д., образуются продукты сгорания топлива – смесь различных газов высокой температуры. Именно тепловая энергия продуктов сгорания топлива является источником электроэнергии, вырабатываемой ТЭС.

Далее внутри котла осуществляется передача тепла от дымовых газов к воде, движущейся внутри труб. К сожалению, не всю тепловую энергию, высвободившуюся в результате сгорания топлива, по техническим и экономическим причинам удается передать воде. Охлажденные до температуры 130– 160 °С продукты сгорания топлива (дымовые газы) через дымовую трубу покидают ТЭС. Часть теплоты, уносимой дымовыми газами, в зависимости от вида используемого топлива, режима работы и качества эксплуатации, составляет 5– 15 %.

Часть тепловой энергии, оставшаяся внутри котла и переданная воде, обеспечивает образование пара высоких начальных параметров. Этот пар направляется в паровую турбину. На выходе из турбины с помощью аппарата, который называется конденсатором, поддерживается глубокий вакуум: давление за паровой турбиной составляет 3– 8 кПа (напомним, что атмосферное давление находится на уровне 100 кПа). Поэтому пар, поступив в турбину с высоким давлением, движется к конденсатору, где давление мало, и расширяется. Именно расширение пара и обеспечивает превращение его потенциальной энергии в механическую работу. Паровая турбина устроена так, что энергия расширения пара преобразуется в ней во вращение ее ротора. Ротор турбины связан с ротором электрогенератора, в обмотках статора которого генерируется электрическая энергия, представляющая собой конечный полезный продукт (товар) функционирования ТЭС.

Для работы конденсатора, который не только обеспечивает низкое давление за турбиной, но и заставляет пар конденсироваться (превращаться в воду), требуется большое количество холодной воды. Это – третий вид «сырья», поставляемый на ТЭС, и для функционирования ТЭС он не менее важен, чем топливо. Поэтому ТЭС строят либо вблизи имеющихся природных источников воды (река, море), либо строят искусственные источники (пруд-охладитель, воздушные башенные охладители и др.).

Основная потеря тепла на ТЭС возникает из-за передачи теплоты конденсации охлаждающей воде, которая затем отдает ее окружающей среде. С теплом охлаждающей воды теряется более 50 % тепла, поступающего на ТЭС с топливом. Кроме того, в результате происходит тепловое загрязнение окружающей среды.

Часть тепловой энергии топлива потребляется внутри ТЭС либо в виде тепла (например, на разогрев мазута, поступающего на ТЭЦ в густом виде в железнодорожных цистернах), либо в виде электроэнергии (например, на привод электродвигателей насосов различного назначения). Эту часть потерь называют собственными нуждами.

Для нормальной работы ТЭС, кроме «сырья» (топливо, охлаждающая вода, воздух) требуется масса других материалов: масло для работы систем смазки, регулирования и защиты турбин, реагенты (смолы) для очистки рабочего тела, многочисленные ремонтные материалы.

Наконец, мощные ТЭС обслуживаются большим количеством персонала, который обеспечивает текущую эксплуатацию, техническое обслуживание оборудования, анализ технико-экономических показателей, снабжение, управление и т.д. Ориентировочно можно считать, что на 1 МВт установленной мощности требуется 1 персона и, следовательно, персонал мощной ТЭС составляет несколько тысяч человек. Любая конденсационная паротурбинная электростанция включает в себя четыре обязательных элемента:

· энергетический котел, или просто котел, в который подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идет процесс горения – химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, которая передается питательной воде. Последняя нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения. Этот пар с температурой 540°С и давлением 13– 24 МПа по одному или нескольким трубопроводам подается в паровую турбину;

· турбоагрегат, состоящий из паровой турбины, электрогенератора и возбудителя. Паровая турбина, в которой пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), преобразует потенциальную энергию сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя;

· конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения. Это позволяет очень существенно сократить затрату энергии на последующее сжатие образовавшейся воды и одновременно увеличить работоспособность пара, т.е. получить большую мощность от пара, выработанного котлом;

· питательный насос для подачи питательной воды в котел и создания высокого давления перед турбиной.

Таким образом, в ПТУ над рабочим телом совершается непрерывный цикл преобразования химической энергии сжигаемого топлива в электрическую энергию.

Кроме перечисленных элементов, реальная ПТУ дополнительно содержит большое число насосов, теплообменников и других аппаратов, необходимых для повышения ее эффективности. Технологический процесс производства электроэнергии на ТЭС, работающей на газе, представлен на рис. 3.2.

Основными элементами рассматриваемой электростанции (рис.3.2) являются котельная установка, производящая пар высоких параметров; турбинная или паротурбинная установка, преобразующая теплоту пара в механическую энергию вращения ротора турбоагрегата, и электрические устройства (электрогенератор, трансформатор и т.д.), обеспечивающие выработку электроэнергии.

Основным элементом котельной установки является котел. Газ для работы котла подается от газораспределительной станции, подключенной к магистральному газопроводу (на рисунке не показан), к газораспределительному пункту (ГРП) 1. Здесь его давление снижается до нескольких атмосфер и он подается к горелкам 2, расположенным в поде котла (такие горелки называются подовыми).


Рис. 3.2. Технологический процесс производства электроэнергии на ТЭС, работающей на газе

 

 


Собственно котел представляет собой П-образную конструкцию с газоходами прямоугольного сечения. Левая ее часть называется топкой. Внутренняя часть топки свободна, и в ней происходит горение топлива, в данном случае газа. Для этого к горелкам специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25. На рис. 3.2 показан так называемый вращающийся воздухоподогреватель, теплоаккумулирующая набивка которого на первой половине оборота обогревается уходящими дымовыми газами, а на второй половине оборота она нагревает поступающий из атмосферы воздух. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 подается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки котла подается в его топку – камеру, в которой происходит горение топлива. При горении образуется факел, представляющий собой мощный источник лучистой энергии. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела.

Стены топки облицованы экранами 19 – трубами, к которым подается питательная вода из экономайзера 24. На схеме изображен так называемый прямоточный котел, в экранах которого питательная вода, проходя трубную систему котла только 1 раз, нагревается и испаряется, превращаясь в сухой насыщенный пар. Широкое распространение получили барабанные котлы, в экранах которых осуществляется многократная циркуляция питательной воды, а отделение пара от котловой воды происходит в барабане.

Пространство за топкой котла достаточно густо заполнено трубами, внутри которых движется пар или вода. Снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе 26.

Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Полученный на выходе из конвективного пароперегревателя пар высоких параметров покидает котел и поступает по паропроводу к паровой турбине.

Мощная паровая турбина обычно состоит из нескольких как бы отдельных турбин – цилиндров.

К первому цилиндру – цилиндру высокого давления (ЦВД) 17 пар подводится прямо из котла, и поэтому он имеет высокие параметры (для турбин СКД – 23,5 МПа, 540 °С, т.е. 240 ат/540 °С). На выходе из ЦВД давление пара составляет 3–3,5 МПа (30–35 ат), а температура – 300–340 °С. Если бы пар продолжал расширяться в турбине дальше от этих параметров до давления в конденсаторе, то он стал бы настолько влажным, что длительная работа турбины была бы невозможной из-за эрозионного износа его деталей в последнем цилиндре. Поэтому из ЦВД относительно холодный пар возвращается обратно в котел в так называемый промежуточный пароперегреватель 23. В нем пар попадает снова под воздействие горячих газов котла, его температура повышается до исходной (540 °С). Полученный пар направляется в цилиндр среднего давления (ЦСД) 16. После расширения в ЦСД до давления 0,2–0,3 МПа (2–3 ат) пар поступает в один или несколько одинаковых цилиндров низкого давления (ЦНД) 15.

Таким образом, расширяясь в турбине, пар вращает ее ротор, соединенный с ротором электрического генератора 14, в статорных обмотках которого образуется электрический ток. Трансформатор повышает его напряжение для уменьшения потерь в линиях электропередачи, передает часть выработанной энергии на питание собственных нужд ТЭС, а остальную электроэнергию отпускает в энергосистему.

И котел, и турбина могут работать только при очень высоком качестве питательной воды и пара, допускающем лишь ничтожные примеси других веществ. Кроме того, расходы пара огромны (например, в энергоблоке 1200 МВт за 1 с испаряется, проходит через турбину и конденсируется более 1 т. воды). Поэтому нормальная работа энергоблока возможна только при создании замкнутого цикла циркуляции рабочего тела высокой чистоты.

Пар, покидающий ЦНД турбины, поступает в конденсатор 12 – теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом 9 из реки, водохранилища или специального охладительного устройства (градирни).

Градирня – это железобетонная пустотелая вытяжная башня (рис. 3.3) высотой до 150 м и выходным диаметром 40– 70 м, которая создает самотягу для воздуха, поступающего снизу через воздухо-направляющие щиты.

Внутри градирни на высоте 10–20 м устанавливают оросительное (разбрызгивающее устройство). Воздух, движущийся вверх, заставляет часть капель (примерно 1,5–2 %) испаряться, за счет чего охлаждается вода, поступающая из конденсатора и нагретая в нем. Охлажденная вода собирается внизу в бассейне, перетекает в аванкамеру 10, и оттуда циркуляционным насосом 9 она подается в конденсатор 12 (рис.3.2).

 

Рис. 3.3. Устройство градирни с естественной тягой  
Рис. 3.4. Внешний вид башенной градирни

 


Наряду с оборотной, используют прямоточное водоснабжение, при котором охлаждающая вода поступает в конденсатор из реки и сбрасывается в нее ниже по течению. Пар, поступающий из турбины в межтрубное пространство конденсатора, конденсируется и стекает вниз; образующийся конденсат конденсатным насосом 6 подается через группу регенеративных подогревателей низкого давления (ПНД) 3 в деаэратор 8. В ПНД температура конденсата повышается за счет теплоты конденсации пара, отбираемого из турбины. Это позволяет уменьшить расход топлива в котле и повысить экономичность электростанции. В деаэраторе 8 происходит деаэрация – удаление из конденсата растворенных в нем газов, нарушающих работу котла. Одновременно бак деаэратора представляет собой емкость для питательной воды котла.

Из деаэратора питательная вода питательным насосом 7, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления (ПВД).

Регенеративный подогрев конденсата в ПНД и ПВД – это основной и очень выгодный способ повышения КПД ТЭС. Пар, который расширился в турбине от входа до трубопровода отбора, выработал определенную мощность, а поступив в регенеративный подогреватель, передал свое тепло конденсации питательной воде (а не охлаждающей!), повысив ее температуру и тем самым сэкономив расход топлива в котле. Температура питательной воды котла за ПВД, т.е. перед поступлением в котел, составляет в зависимости от начальных параметров 240–280°С. Таким образом замыкается технологический пароводяной цикл преобразования химической энергии топлива в механическую энергию вращения ротора турбоагрегата.








Дата добавления: 2015-09-18; просмотров: 13897;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.016 сек.