Окислительное фосфорилирование

Энергия, образующаяся при прохождении потока электронов по дыхательной цепи, используется для сопряженного фосфорилирования ADP. Эти два процесса взаимозависимы: окисление не может протекать в отсутствии ADP. Соотношение окисления и фосфорилирования определяется коэффициентом P/O (количество моль фосфорилированного ADP на 1/2 моль кислорода) коэффициент Р/О называется коэффициентом окислительного фосфорилирования

Цепь транспорта электронов функционирует как протонная (Н+)помпа, осуществляя перенос протонов из матрикса через внутреннюю мембрану в межмембранное пространство.

 

Сопряжение цепи транспорта электронов и фосфорилирования ADP посредством протонного градиента. Сопряжение общих путей катаболизма с дыхательной цепью показано на рисунках 8а и 8б.   В митохондриях на 3 участках окислительной цепи происходит выделение протонов во внешнюю среду (комплексы I, III, IY). Соответственно 3 реакции ведут к образованию DmH+. Выдвинута гипотеза о механизме переноса Н+. Считается, что он осу­ществляется путем активного транспорта, который снабжается энергией за счет чередования окисли­тельно-восстановительных циклов. В соответствии с этой гипотезой, при восстановлении переносящего комплекса происходят конформационные измене­ния, которые активируют протон - связывающий участок, расположенный на матриксной стороне внутренней мембраны. При окис­лении переносчика его конформация изменяется та­ким образом, что Навязывающий участок оказывается на противоположной стороне мембра­ны. В то же время сродство этого участка к протону уменьшается, и протон высвобождается в межмем­бранное пространство. Перенос протонов приводит к возникновению разности концентрации Н+ с двух сторон митохондриальной мембраны: более высокая концентрация будет снаружи и более низкая - внутри. Митохондрия в результате переходит в «энергизованное» состояние, так как возникает градиент концентрации Н+ и одновременно разность электрических потенциалов со знаком плюс на наружной поверхности

Рис. 8а

 

Рис. 8б.

Электрохимический потенциал способен совершать «полезную» работу, он заставляет протоны двигаться в обратном направлении, но мембрана непроницаема для них кроме отдельных участков, называемых протонными каналами. Обратный перенос протонов в матрикс является экзоэргическим процессом, высвобождающаяся при этом энергия используется на фосфорилирование ADP. Эту реакцию катализирует фермент Н+-АТР-синтетаза, располагающаяся в области протонных каналов на внутренней поверхности внутренней мембраны. При участии фермента АТФ-АДФ транслоказы АТФ транспортируется в цитоплазму в обмен на АДФ по типу антипорта.

АТФ-синтетаза имеет сложное строение и состоит из 2 компонентов: Fо и F1. Fо погружен в липидный бислой, состоит из большого числа субъединиц и предположительно формирует Н+- переносящий канал. F1 осуществляет синтез АТФ.

Поскольку синтез молекулы АТФ связан, как минимум, с переносом 2 протонов через АТФ-синтазу, а при окислении НАД(Ф)-H2 молекулярным кислородом, т. е. поступлении 2 электронов на 1/2O2 выделяются 6H+, максимальный выход АТФ в этом .процессе составляет 3 молекулы. При окислении янтарной кислоты, водород которой переносится на сукцинатдегидрогеназу и далее на убихинон, возможны только 2 фосфорилирования, так как при этом выпадает участок дыхательной цепи, где локализован первый генератор DmH+. Таким образом, место включения электронов от разных субстратов в цепь их дальнейшего транспорта определяет число функционирующих протонных помп в дыхательной цепи.








Дата добавления: 2015-09-18; просмотров: 893;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.