Тема 4 Идентификатор и дескриптор процесса.

Цель: Дать понятие идентификатора процесса.

План:

1 Пользователь системы.

2. Дескриптор.

 

Как правило, далеко не каждая авторизация отдельных операций сопровождается актом аутентификации. Чаше всего используется принцип сессий работы с вычислительной системой. В начале работы пользователь устанавливает соединение и "входит" в систему. При "входе" происходит его аутентификация.Для того чтобы быть аутентифицированным, пользователь должен иметь учетную запись (account) в системной базе данных. Затем пользователь проводит сеанс работы с системой, а по завершении этого сеанса аннулирует регистрацию. Одним из атрибутов сессии является идентификатор пользователя (user id) или контекст доступа (security context), который и используется при последующих авторизациях. Обычно такой идентификатор имеет две формы: числовой код, применяемый внутри системы, и мнемоническое символьное имя, используемое при общении с пользователем.

Сессии в Unix Например, в системах семейства Unix пользователь идентифицируется целочисленным значением uid (user identifier). С каждой задачей (процессом) связано два идентификатора пользователя: реальный и эффективный. В большинстве случаев эти идентификаторы совпадают (ситуации, когда они не совпадают, подробно обсуждаются в разд. Изменение идентификатора пользователя). Таким образом, каждая задача обязательно исполняется от имени того или иного пользователя, имеющего учетную запись в системе. Пользователь может иметь также символьное имя. В старых Unix системах соответствие между символьным и числовым идентификаторами устанавливалось на основе содержимого текстового файла /etc/passwd. Каждая строка этого файла описывает одного пользователя и состоит из семнадцати полей, разделенных символом ':'. В первом поле содержится символьное имя пользователя, во втором — числовой идентификатор в десятичной записи. Остальные поля содержат другие сведения о пользователе, например, его полное имя. Пользовательские программы могут устанавливать соответствие между числовым и символьным идентификаторами самостоятельно, путем просмотра файла /etc/passwd, или использовать библиотечные функции, определенные стандартом POSIX. Во многих реализациях эти функции используют вместо /etc/passwd индексированную базу данных, а сам файл /etc/passwd сохраняется лишь для совместимости со старыми программами. В современных системах семейства Unix библиотеки работы со списком пользователей имеют модульную архитектуру и могут использовать различные, в том числе и распределенные по сети базы данных. Интерфейс модуля работы с конкретным типом БД называется РАМ (Person Autentification Module -модуль аутентификации людей).Нужно отметить, что соответствие между символьным и числовым идентификаторами в Unix не является взаимно однозначным. Одному и тому же числовому идентификатору может соответствовать несколько имен. Кроме того, в Unix разрешено создать объекты с числовым uid, которому не соответствует никакое символьное имя.

Большинство современных ОС позволяют также запускать задания без входа систему и создания сессии. Так, практически все системы разделения времени (Unix, VMS, MVS-OS/390-z/OS) предоставляют возможность пользователям запускать задачи в заданные моменты астрономического времени периодически, например, в час ночи в пятницу каждой недели. Каждая такая задача исполняется от имени определенного пользователя — того, кто запросил запуск задачи. Для управления правами доступа в таких ситуациях идентификатор пользователя ассоциируется не с сессией, а с отдельными заданиями, а обычно даже с отдельными задачами. В Windows NT/2000/XP задачи, которые могут запускаться и работать без входа пользователя в систему, называются сервисами. По умолчанию, сервисы запускаются от имени специального [псевдо|пользователя System, но в свойствах сервиса можно указать, от чьего имени он будет запускаться. Кроме того, некоторые комплектации системы (Terminal Server Edition, Citrix ICA) допускают одновременную интерактивную работу нескольких пользователей. Чтобы обеспечить разделение доступа во всех этих случаях, каждый процесс в системе имеет контекст доступа (security context), соответствующий той или иной учетной записи.

В основе UNIX лежит концепция процесса - единицы управления и единицы потребления ресурсов. Процесс представляет собой программу в состоянии выполнения, причем в UNIX в рамках одного процесса не могут выполняться никакие параллельные действия.

Каждый процесс работает в своем виртуальном адресном пространстве. Совокупность участков физической памяти, отображаемых на виртуальные адреса процесса, называется образом процесса.

При управлении процессами операционная система использует два основных типа информационных структур: дескриптор процесса (структура proc) и контекст процесса (структура user).

Дескриптор процесса содержит такую информацию о процессе, которая необходима ядру в течение всего жизненного цикла процесса, независимо от того, находится ли он в активном или пассивном состоянии, находится ли образ процесса в оперативной памяти или выгружен на диск. Дескрипторы отдельных процессов объединены в список, образующий таблицу процессов. Память для таблицы процессов отводится динамически в области ядра. На основании информации, содержащейся в таблице процессов, операционная система осуществляет планирование и синхронизацию процессов. В дескрипторе прямо или косвенно (через указатели на связанные с ним структуры) содержится информация о состоянии процесса, расположении образа процесса в оперативной памяти и на диске, о значении отдельных составляющих приоритета, а также его итоговое значение - глобальный приоритет, идентификатор пользователя, создавшего процесс, информация о родственных процессах, о событиях, осуществления которых ожидает данный процесс и некоторая другая информация.

Контекст процесса содержит менее оперативную, но более объемную часть информации о процессе, необходимую для возобновления выполнения процесса с прерванного места: содержимое регистров процессора, коды ошибок выполняемых процессором системных вызовов, информацию о всех открытых данным процессом файлов и незавершенных операциях ввода-вывода (указатели на структуры file) и другие данные, характеризующие состояние вычислительной среды в момент прерывания. Контекст, так же как и дескриптор процесса, доступен только программам ядра, то есть находится в виртуальном адресном пространстве операционной системы, однако он хранится не в области ядра, а непосредственно примыкает к образу процесса и перемещается вместе с ним, если это необходимо, из оперативной памяти на диск. В UNIX для процессов предусмотрены два режима выполнения: привилегированный режим - "система" и обычный режим - "пользователь". В режиме "пользователь" запрещено выполнение действий, связанных с управлением ресурсами системы, в частности, корректировка системных таблиц, управление внешними устройствами, маскирование прерываний, обработка прерываний. В режиме "система" выполняются программы ядра, а в режиме "пользователь" - оболочка и прикладные программы. При необходимости выполнить привилегированные действия пользовательский процесс обращается с запросом к ядру в форме так называемого системного вызова. В результате системного вызова управление передается соответствующей программе ядра. С момента начала выполнения системного вызова процесс считается системным. Таким образом, один и тот же процесс может находиться в пользовательской и системной фазах. Эти фазы никогда не выполняются одновременно.

В данных версиях UNIX процесс, работающий в режиме системы, не мог быть вытеснен другим процессом. Из-за этого организация ядра, которое составляет привилегированную общую часть всех процессов, упрощалась, т.к. все функции ядра не были реентерабельными. Однако, при этом реактивность системы страдала - любой процесс, даже низкоприоритетный, войдя в системную фазу, мог оставаться в ней сколь угодно долго. Из-за этого свойства UNIX не мог использоваться в качестве ОС реального времени. В более поздних версиях, и в SVR4 в том числе, организация ядра усложнилась и процесс можно вытеснить и в системной фазе, но не в произвольный момент времени, а только в определенные периоды его работы, когда процесс сам разрешает это сделать установкой специального сигнала.

В SVR4 имеется несколько процессов, которые не имеют пользовательской фазы, например, процесс pageout, организующий выталкивание страниц на диск. Порождение процессов в системе UNIX происходит следующим образом. При создании процесса строится образ порожденного процесса, являющийся точной копией образа породившего процесса. Сегмент данных и сегмент стека отца действительно копируются на новое место, образуя сегменты данных и стека сына. Процедурный сегмент копируется только тогда, когда он не является разделяемым. В противном случае сын становится еще одним процессом, разделяющим данный процедурный сегмент.

После выполнения системного вызова fork оба процесса продолжают выполнение с одной и той же точки. Чтобы процесс мог опознать, является ли он отцом или сыном, системный вызов fork возвращает в качестве своего значения в породивший процесс идентификатор порожденного процесса, а в порожденный процесс NULL. Типичное разветвление на языке C записывается так:

if( fork() ) { действия отца } else { действия сына }

Идентификатор сына может быть присвоен переменной, входящей в контекст процесса-отца. Так как контекст процесса наследуется его потомками, то дети могут узнать идентификаторы своих старших братьев, так образом сумма знаний наследуется при порождении и может быть распространена между родственными процессами. Наследуются все характеристики процесса, содержащиеся в контексте.

На независимости идентификатора процесса от выполняемой процессом программы построен механизм, позволяющий процессу придти к выполнению другой программы с помощью системного вызова exec.

Таким образом в UNIX порождение нового процесса происходит в два этапа - сначала создается копия процесса-родителя, то есть дублируется дескриптор, контекст и образ процесса. Затем у нового процесса производится замена кодового сегмента на заданный.

Вновь созданному процессу операционная система присваивает целочисленный идентификатор, уникальный за весь период функционирования системы.

Литература: О – 1. 2. 3. 5

Контрольные вопросы:

1. Чем отличается дескриптор специального файла от дескриптора обычного файла?

2. Из чего состоит таблица процессов?

3. Из чего состоит таблица файлов?

 

 








Дата добавления: 2015-09-11; просмотров: 1837;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.