До соприкосновения (а); после соприкосновения (б)
При соприкосновении полупроводников в пограничном слое происходит рекомбинация (воссоединение) электронов и дырок. Свободные электроны из зоны полупроводника n-типа занимают свободные уровни в валентной зоне полупроводника р-типа. В результате вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда и поэтому обладающий высоким удельным сопротивлением, - так называемый запирающий слой (рис. 80 б). Толщина запирающего слоя l обычно не превышает нескольких микрометров.
Расширению запирающего слоя препятствуют неподвижные ионы донорных и акцепторных примесей, которые образуют на границе полупроводников двойной электрический слой. Этот слой определяет контактную разность потенциалов ∆φк на границе полупроводников (рис. 81). Возникшая разность потенциалов создает в запирающем слое электрическое поле напряженностью Езап, препятствующее как переходу электронов из полупроводника n-типа в полупроводник р-типа, так и переходу дырок в полупроводник n-типа. В то же время электроны могут свободно двигаться из полупроводника р-типа в полупроводник n-типа, как и дырки из полупроводника n-типа в полупроводник р-типа. Таким образом, контактная разность потенциалов препятствует движению основных носителей заряда и не препятствует движению неосновных носителей заряда. Однако при движении через р-п-переход неосновных носителей {дрейфовый ток Iдр) происходит снижение контактной разности потенциалов, что позволяет некоторой части основных носителей, обладающих достаточной энергией, преодолеть потенциальный барьер, обусловленный контактной разностью потенциалов. Появляется диффузионный ток 1диф, который направлен навстречу дрейфовому току 1др, то есть возникает динамическое равновесие, при котором 1др= 1диф.
Если к p-n-переходу приложить внешнее напряжение Uобр, которое создает в запирающем слое электрическое поле напряженностью Евн, совпадающее по направлению с полем неподвижных ионов напряженностью Езап (рис. 82 а), то это приведет к расширению запирающего слоя, так как носители заряда уйдут от контактной зоны. При этом сопротивление p-n-перехода велико, ток через него мал, так как обусловлен движением неосновных носителей заряда. В этом случае ток называют обратным Iобр а р-п-переход - закрытым.
При противоположной полярности источника напряжения (рис. 82 б) внешнее поле направлено навстречу полю двойного электрического слоя, толщина запирающего слоя уменьшается. Сопротивление р-п-перехода резко снижается и возникает сравнительно большой ток. В этом случае ток называют прямым 1пр, а р-п-переход - открытым.
Рис. 82. p-n-переход во внешнем электрическом поле:
Дата добавления: 2015-09-11; просмотров: 1755;