Механическая вращательная подсистема

Фазовые переменные этой подсистемы — моменты сил М и угловые скорости ω — соответственно, аналоги токов и напряжений. Запишем уравнения трех типов простейших элементов.

1. Уравнение вязкого трения вращения М = ω/Rвр, где Rвр – 1/k — аналог электрического сопротивления; k — коэффициент трения вращения.

2. Основное уравнение динамики вращательного движения М = J(dω/dt), где J — аналог электрической емкости (момент инерции элемента).

3. Уравнение кручения бруса с круглым поперечным сечением М = GJpθ, где М — крутящий момент; G — модуль сдвига; Jp — полярный момент инерции сечения; θ = d /dl — относительный угол закручивания.

Рассмотрим брус конечной длины, тогда θ = /l, где — угол закручивания; l — длина бруса. Продифференцируем обе части уравнения по времени, т. е. dM/dt – (GJр/l)(d /dt), или если учесть, что (d /dt) = ω и Lвр = l/(GJp), то ω = Lвр (dM/dt), где Lвр — аналог электрической индуктивности (вращательная гибкость).

Аналогичное компонентное уравнение можно получить для спиральной пружины, М = с , где с — жесткость пружины. Продифференцировав обе части уравнения по времени, получим ω = Lвp(dM/dt); Lвp = l/c.

 

 

13. Лекция: Математические модели (ММ) на различных иерархических уровнях //

//








Дата добавления: 2015-08-21; просмотров: 760;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.