Требования к математическим моделям и их классификация

Под математической моделью (ММ) конструкции, технологического процесса и его элементов понимают систему математических соотношений, описывающих с требуемой точностью изучаемый объект и его поведение в производственных условиях. При построении математических моделей используют различные математические средства описания объекта — теорию множеств, теорию графов, теорию вероятностей, математическую логику, математическое программирование, дифференциальные или интегральные уравнения и т. д.

Выполнение проектных операций и процедур в САПР основано на оперировании математическими моделями (ММ). С их помощью прогнозируются характеристики и оцениваются возможности предложенных вариантов схем и конструкций, проверяется их соответствие предъявляемым требованиям, проводится оптимизация параметров, разрабатывается техническая документация и т. п.

В САПР для каждого иерархического уровня сформулированы основные положения математического моделирования — выбран и развит соответствующий математический аппарат, получены типовые ММ элементов проектируемых объектов, формализованы методы получения и анализа математических моделей систем. Сложность задач проектирования и противоречивость требований высокой точности, полноты и малой трудоемкости анализа обусловливают целесообразность компромиссного удовлетворения этих требований с помощью соответствующего выбора моделей. Это обстоятельство приводит к расширению множества используемых моделей и развитию алгоритмов адаптивного моделирования [32, 17, 27].

К математическим моделям предъявляют требования высокой точности, экономичности и универсальности. Экономичность математических моделей определяется затратами машинного времени (работы ЭВМ). Степень универсальности математических моделей зависит от возможности их использования для анализа большого числа технологических процессов и их элементов. Требования к точности, экономичности и степени универсальности математических моделей противоречивы. Поэтому необходимо иметь удачное компромиссное решение.

Основными требованиями, предъявляемыми к математическим моделям, являются требования адекватности, универсальности и экономичности [77].

Адекватность. Модель считается адекватной, если отражает заданные свойства объекта с приемлемой точностью. Точность определяется как степень совпадения значений выходных параметров модели и объекта. Пусть εj — относительная погрешность модели по j-му выходному параметру:

(12.1)

где — j-й выходной параметр, рассчитанный с помощью модели; yj — тот же выходной параметр, существующий в моделируемом объекте.

Погрешность модели εj по совокупности учитываемых выходных параметров оценивается одной из норм вектора εj=(ε12,...εm).

Точность модели различна в разных условиях функционирования объекта. Эти условия характеризуются внешними параметрами. Если задаться предельной допустимой погрешностью εпред, то можно в пространстве внешних параметров выделить область, в которой выполняется условие

(12.2)

Эту область называют областью адекватности (ОА) модели. Возможно введение индивидуальных предельных значений εпред для каждого выходного параметра и определение ОА как области, в которой одновременно выполняются все m условий вида |εj| εпредj.

Определение областей адекватности для конкретных моделей — сложная процедура, требующая больших вычислительных затрат. Эти затраты и трудности представления ОА быстро растут с увеличением размерности пространства внешних параметров. Определение ОА —более трудная задача, чем, например, задача параметрической оптимизации. Для моделей унифицированных элементов расчет областей адекватности становится оправданным в связи с однократностью определения ОА и многократностью их использования при проектировании различных систем. Знание ОА позволяет правильно выбирать модели элементов из числа имеющихся и тем самым повышать достоверность результатов машинных расчетов.

В библиотеку моделей элементов наряду с алгоритмом, реализующим модель, и номинальными значениями параметров должны включаться граничные значения внешних параметров q'k и q''k, задающие область адекватности.

Универсальность. При определении ОА необходимо выбрать совокупность внешних параметров и совокупность выходных параметров уj, отражающих учитываемые в модели свойства. Типичными внешними параметрами при этом являются параметры нагрузки и внешних воздействий (электрических, механических, тепловых, радиационных и т. п.). Увеличение числа учитываемых внешних факторов расширяет применимость модели, но существенно удорожает работу по определению ОА. Выбор совокупности выходных параметров также неоднозначен, однако для большинства объектов число и перечень учитываемых свойств и соответствующих им выходных параметров сравнительно невелики, достаточно стабильны и составляют типовой набор выходных параметров. Например, для макромоделей логических элементов БИС такими выходными параметрами являются уровни выходного напряжения в состояниях логических "О" и "1", запасы помехоустойчивости, задержка распространения сигнала, рассеиваемая мощность.

Если адекватность характеризуется положением и размерами ОА, то универсальность модели определяется числом и составом учитываемых в модели внешних и выходных параметров.

Экономичность. Экономичность модели характеризуется затратами вычислительных ресурсов для ее реализации, а именно затратами машинного времени Тм и памяти Пм. Общие затраты Тм и Пм на выполнение в САПР какой-либо проектной процедуры зависят как от особенностей выбранных моделей, так и от методов решения.

В большинстве случаев при реализации численного метода происходят многократные обращения к модели элемента, входящего в состав моделируемого объекта. Тогда удобно экономичность модели элемента характеризовать затратами машинного времени при обращении к модели, а число обращений к модели должно учитываться при оценке экономичности метода решения.

Экономичность модели по затратам памяти оценивается объемом оперативной памяти, необходимой для реализации модели.

Требования широких областей адекватности, высокой степени универсальности, с одной стороны, и высокой экономичности — с другой, являются противоречивыми. Наилучшее компромиссное удовлетворение этих требований оказывается неодинаковым в различных применениях. Это обстоятельство обусловливает использование в САПР многих моделей для объектов одного и того же типа — различного рода макромоделей, многоуровневых, смешанных моделей и т. п.

on_load_lecture()

 

12. Лекция: Методы автоматизированного проектирования конструкции и технологического процесса различного уровня иерархии //

//








Дата добавления: 2015-08-21; просмотров: 2275;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.