ZАz–В#þ. Если точка принадлежит прямой, то её проекции должны принадлежать одноименным проекциям этой прямой (аксиома принадлежности точки прямой)
а) модель | б) эпюр | |
Рисунок 3.10. Горизонтально-проецирующая прямая | ||
Взаимное расположение точки и прямой. |
Если точка принадлежит прямой, то её проекции должны принадлежать одноименным проекциям этой прямой (аксиома принадлежности точки прямой). Из четырех предложенных на рисунке 3.14 точек, только одна точка С лежит на прямой АВ.
а) эпюр | б) модель | |
Рисунок 3.14. Взаимное расположение точки и прямой | ||
В тех случаях когда точка и прямая лежат в плоскости уровня (параллельной какой-либо из плоскостей проекций П1, П2 и П3), то вопрос о взаимном расположении прямой и точки решается при построении проекций на плоскость соответственно П1, П2 или П3. Например, прямая АВ и точка К лежат в плоскости параллельной профильной плоскости проекций (рис.3.15).
а) эпюр | б) модель | |
Рисунок 3.15 Точка и прямая, расположенные в профильной плоскости уровня | ||
Определение длины отрезка прямой линиии углов наклона прямой к плоскостям проекций. | ||
Длину отрезка АВ можно определить из прямоугольного треугольника АВС |AС|=|A1B1|, |СB=|ZD, угол a-угол наклона отрезка к плоскости П1, b-угол наклона отрезка к плоскости П2. Для этогона эпюре (рис.3.17) из точки B1 под углом 900 проводим отрезок |B1B1* ZD=|,полученныйв результате построений отрезокA1B1*и будет натуральной величиной отрезка АВ, а угол B1A1B1* =α. Рассмотренный метод называется методом прямоугольного треугольника. Однако все построения можно объяснить, как вращение треугольникаАВСвокруг стороны AС до тех пор, пока он не станет параллелен плоскости П1, в этом случае треугольник проецируется на плоскость проекций без искажения. Подробнее вращение вокруг оси параллельной плоскости проекций рассмотрены в разделе «Методы преобразования ортогональных проекций»
а) модель | б) эпюр | |
Рисунок 3.17. Определение натуральной величины отрезка и угла его наклона к горизонтальной плоскости проекций |
Для определения b-угол наклона отрезка к плоскости П2 построения аналогичные (рис.3.18). Только в треугольнике АВВ* сторона B|В*=|UDи треугольниксовмещается с плоскостью П2.
а) модель | б) эпюр | |
Рисунок 3.18. Определение натуральной величины отрезка и угла его наклона к фронтальной плоскости проекци |
Дата добавления: 2015-08-21; просмотров: 1339;