ПРАКТИЧЕСКАЯ РАБОТА № 5
Тема: Очистка твердых остатков и активной грязи через сита.
Цель: Изучить наиболее важные условия непрерывного культивирования. Сравнительная характеристика и применение.
Методическое обеспечение.Методические указания по выполнению практических работ.
Непрерывное культивированиеподразделяют на открытое и закрытое. В открытых системах клетки постоянно вымываются вытекающей жидкостью со скоростью образования в системе новых клеток; в этих условиях легко достигается их устойчивая концентрация.
В закрытыхсистемах клетки в какой-то мере задерживаются в системе и их количество постоянно возрастает.
Непрерывный процесс может быть гомогенно- и гетерогенно-непрерывным. При гомогенно-непрерывномпроцессе в ферментаторе все параметры (концентрация питательных веществ, скорость роста микроорганизмов) постоянны во времени. При гетерогенно-непрерывномпроцессе несколько ферментаторов объединяют в батарею. При этом в отдельных ферментаторах условия постоянные, но они могут быть отличными от условий в другом ферментаторе.
Известны методы культивирования, занимающие промежуточное положение между непрерывным и периодическим:
Объёмно-доливной – среда порциями подаётся в аппарат и также порциями отбирается из него;
Добавление питательной среды к культуре без её отбора. Этот метод удлиняет время культивирования, но приводит к более полному использованию всех имеющихся в среде элементов питания.
В практике современной индустриальной биотехнологии существует три главных типа биореакторов и две формы биокатализаторов. Биореакторы могут функционировать на основе разовой (однократной), восполняемой (неполностью) и непрерывной (продолженной) загрузки. А в самих реакторах культуры могут быть статическими и перемешивающимися, находиться в присутствии кислорода (аэробы) или без него (анаэробы), а также в водной фазе или условиях низкого увлажнения.
Модификацией процесса с разовой загрузкой является возобновляемая ферментация (feеd batch – от feеd-насыщающий), при которой количество питательного вещества может быть добавлено в ходе ферментации с целью восполнения частично израсходованного субстрата или для активации процесса. Однако в своей принципиальной основе подобные системы остаются замкнутыми, поскольку у них нет постоянного оттока содержимого.
В противоположность этому, ферментационная система, рассматривается как открытая, если ее компоненты ( микроорганизмы и питательные субстраты) могут постоянно добавляться и удаляться из биореактора. Такие ферментеры оснащены приспособлениями, постоянно подающими свежую питательную среду и удаляющими биомассу и другие продукты. В таких системах скорость конверсии субстрата в биомассу или в целевой продукт должна быть точно сбалансирована со скоростью поступления вышеуказанных компонентов, что обеспечивает устойчивое состояние метаболических процессов в реакторе.
Хотя непрерывные процессы приобрели широкое практическое применение в лабораторных условиях (масштабах), лишь немногие из них используются в промышленности. Однако непрерывные процессы довольно широко практикуются в производстве одноклеточного белка;
За последние десятилетия форма биореакторов существенно изменилась. Первые (исходные) ферментационные системы представляли собой неглубокие емкости, перемешивание в которых осуществлялось либо путем их встряхивания, либо посредством перемешивания.
Аппараты с механическим перемешиванием
Эти реакторы имеют механическую мешалку с центральным валом и лопастями (лопатками), число которых обычно равно 6, реже 8. Лопасти могут быть прямыми или изогнутыми, часто их располагают в несколько ярусов, что обеспечивает более эффективное перемешивание больших объемов жидкости. В систему входят также отражательные перегородки – узкие металлические пластинки, прикрепленные к внутренним стенкам биореактора. Они предотвращают возникновение водоворотов и обеспечивают вихревое движение жидкости, равномерно распределяемое но всему объему реактора. Однако в ряде случаев они не могут быть применены (культивирование мицелиальных грибов), так как обрастают микроорганизмами (мицелием). Нежное и медленное перемешивание создается в биореакторах, предназначаемых для выращивания клеток животных и (в меньшей степени) растений.
В некоторых ферменторах используют полые мешалки, в которых воздух поступает в среду культивирования через отверстия в нижнем конце их валов и полые лопатки. Аппараты с механическим перемешиванием – наиболее распространенные конструкции в современной микробиологической промышленности.
Рис 1. Ферментер с механическим перемешиванием.
Аппараты с пневматическим перемешиванием
В такого типа аппаратах мешалка отсутствует и перемешивание жидкости осуществляется пузырьками газа (рис.2). Естественно, что скорость массообмена в них намного ниже, чем в ферменторах с механическим перемешиванием (с мешалками). Классическим аппаратом такого типа является эрлифтный реактор (air lift – подъем воздуха). Биореакторы с пневматическим перемешиванием характеризуются более мягким (плавным) перемешиванием содержимого и получили распространение при выращивании клеток животных и растений. Пневматические аппараты привлекают также простотой конструкции и малыми энергозатратами. Основной их недостаток – "тихоходность" Однако и это не всегда является недостатком, поскольку, например, в условиях "тихоходных" установок культуры клеток растений характеризуются биосинтетическими способностями, присущими целому растению.
Рис.2. Ферментеры с пневматическим перемешиванием: а) эрлифтный; б) пузырькового типа
Преимущества микроорганизмов как продуцентов белка состоят в следующем: микроорганизмы обладают высокой скоростью накопления биомассы, которая в 500–5000 раз выше, чем у растений и животных;
микробные клетки способны накапливать очень большие количества белка (дрожжи – до 60%, бактерии – до 75% по массе);
в микробиологическом производстве вследствие высокой специфичности микроорганизмов отсутствует многостадийность процесса; а сам процесс биосинтеза осуществляется в мягких условиях при температурах 30–45° С, рН 3–6 и давлении около 0,1 МПа. Помимо всего прочего, микробиологический путь получения богатой белком биомассы менее трудоемкий по сравнению с получением сельскохозяйственной продукции и органическим синтезом белка. Все эти преимущества и определили быстрое развитие технологии производства микробного белка, которое в настоящее время является самой крупнотоннажной отраслью биотехнологии и открывает возможность промышленной продукции различных кормовых добавок для животноводства и птицеводства с помощью микроорганизмов. Причем получаемые продукты характеризуются высокой кормовой ценностью и в достаточных количествах. Большое число компаний во всем мире участвует в этих процессах и уже производится значительное количество достаточно ценных продуктов такого рода. Основной целью продукции одноклеточного белка является его содержание в препарате. Однако следует иметь в виду, что помимо белка микроорганизмы содержат также и другие вещества: углеводы, витамины, нуклеиновые кислоты и различные минеральные соединения, часть из которых может оказывать и неблагоприятное действие на организм, при использовании в пищу человека или животных. Так, вследствие ограниченной способности человека деградировать нуклеиновые кислоты, прежде чем использовать одноклеточный протеин в качестве пищевого продукта, он должен подвергаться специальной обработке.
Контрольные вопросы:
1. Непрерывное культивированиеподразделяют?
2. Три главных типа биореакторов?
3. Аппараты с механическим перемешиванием.
4. Аппараты с пневматическим перемешиванием.
5. Преимущества микроорганизмов как продуцентов белка состоит?
Задание для СРСП:
1. Биотехнологические аспекты получения первичных и вторичных метаболитов
Задание для СРС:
Оформить результаты практической работы № 5. Ответить на вопросы для самопроверки. Подготовиться к опросу по темам лекции и СРСП. Составить 20 тестовых заданий по темам лекции и практической работы № 5.
Дата добавления: 2015-07-14; просмотров: 1587;