Аэробное окисление органического и неорганического субстрата
Молекулярный кислород атмосферы, очевидно, имеет биогенное происхождение. Появление его связано с процессом фотосинтеза древнейших цианобактерий или их предков, впервые ставших использовать в процессе фотосинтеза донором водорода воду. Переход прокариот к анаэробному окислению оказался возможным только на определенном этапе
эволюции, когда в клетке была сформирована более или менее полная дыхательная цепь.
Большая часть аэробных прокариотных организмов потребляет в качестве источника энергии различные органические соединения, окисляя их до конечных продуктов СО2 и Н2О. Аэробное окисление органических веществ в прокариотной клетке проходит подобно аэробному дыханию эукариот. В основе его лежит окисление пировиноградной кислоты по циклу трикарбоновых кислот (ЦТК – цикл Кребса).
Включению пировиноградной кислоты в цикл Кребса предшествует сложная реакция окисления ее до ацетил-К0А, катализируемая пируватдегидрогеназным комплексом:
СН3 – СО – СООН + К0А – SН + НАД+→СН3 – СО ~ К0А + НАД · Н2 + СО2
Собственно цикл Кребса начинается с реакции конденсации ацетил-К0А с молекулярной щавелевоуксусной кислоты при участии фермента цитрасинтазы.
Цикл Кребса выполняет две важные функции для клетки. В реакциях этого цикла осуществляется полное окисление органического субстрата с отщеплением водорода и переходом его на фермент, помимо этого идет снабжение клетки веществами-предшественниками.
Суммарно цикл Кребса можно выразить следующим уравнением:
СН3СОСООН + 2Н2О→ 3СО2 + 8Н
Исходным субстратом для цикла трикарбоновых кислот служат не только углеводы, но и жирные кислоты и многие аминокислоты.
Цикл Кребса сопряжен с дыхательной цепью. Основная функция дыхательной цепи заключается в запасании энергии клеткой, освобождающейся в процессе переноса электронов путем трансформации ее в химическую энергию фосфатных связей в молекулах АТФ.
В состав дыхательной цепи аэробных прокариотных организмов входят: НАД-дегидрогеназы, ФАД-или ФМН-дегидрогеназы, убихинон и система цитохромов. НАД-дегидрогеназы катализируют отщепление водорода от окисляемого субстрата и передачу его на стартовые переносчики дыхательной цепи – НАД•Н2-дегидрогеназы. С них водород передается в дыхательную цепь на ФАД-или ФМН-дегидрогеназы, затем на убихинон и далее на систему цитохромов. При передаче водорода по дыхательной цепи происходит расщепление его атомов на протоны и электроны. Протоны выделяются в среду, а электроны передаются далее по дыхательной цепи на терминальный переносчик – цитохромоксидазу. Последняя передает их на конечный акцептор – молекулярный кислород, который активизируется и соединяется с водородом.
Перенос электронов по дыхательной цепи на все более низкие энергетические уровни приводит к освобождению значительного количества свободной энергии, которая аккумулируется клеткой в фосфатных связях в
форме молекул АТФ. Поскольку реакции фосфорилирования идут сопряженно с реакциями окисления, этот процесс получил название окислительного фосфорилирования. В основе его лежит разность окислительно-восстановительного потенциала донора и акцептора электронов. Образование АТФ обычно происходит на участках дыхательной цепи с большой разностью потенциала. На примере митохондрий эукариот определены три участка в цепи дыхания. Первый участок связан с переносом водорода НАД•Н2-дегидрогеназой на ФАД-или ФМН-дегидрогеназу. Второй участок сопряжен с активностью убихинона, осуществляющего перенос электронов от ФАД-или ФМН-дегидрогеназы на систетему цитохромов, Третий, последний участок связан с переносом электронов цитохромоксидазой на молекулярный кислород.
Об эффективности реакций окислительного фосфорилирования судят по отношению р/о (количество потребленных молекул неорганического фосфора на один атом поглощенного кислорода).У эокариот отношение р/о равно 3. У многих прокариот отношение р/о может быть меньше трех, что объясняется выпадением некоторых участков дыхательной цепи.
Среди прокариот-аэробов имеются микроорганизмы, способные получать энергию за счет неполного аэробного окисления некоторых органических веществ.
Уксуснокислые бактерии представлены палочками небольших размеров, в молодой культуре они подвижны. Все виды – облигатные аэробы, довольно требовательные к субстратам, особенно к витаминам и в первую очередь к пантотеновой кислоте. Наиболее характерна способность бактерий этой группы окислять этиловый спирт с образованием уксусной кислоты при участии НАД-зависимых дегидрогеназ.
Подчеркнем, что процессы неполного анаэробного окисления не имеют ничего общего с процессами брожения. Энергия для жизнедеятельности клетки образуется в реакциях окисленого фосфорирования, но в меньшем количестве, чем при полном аэробном окислении, так как часть ее сохраняется в недоокисленных конечных продуктах.
Различные виды уксуснокислых бактерий в качестве окисляемого субстрата способны использовать как одноатомные спирты, так и многоатомные спирты – производные сахаров. При окислении одноатомных спиртов образуются различные кислоты. Окисление многоатомных спиртов приводит к образованию альтоз и кетоз. В промышленности уксуснокислые бактерии применяются для получения столового уксуса, а также аскорбиновой кислоты.
В отличие от эукариот, осуществляющих дыхание толькл за счет окисления органических веществ, среди прокариот имеются группы хемолитотрофных микроорганизмов, способных в процессе катаболизма окислять неорганические вещества субстрата.
Дыхательная цепь хемолитотрофных микроорганизмов включает в основном те же ферменты-переносчики электронов, что и дыхательная цепь хемоорганотрофов. Специфика функционирования дыхательной цепи этой группы микроорганизмов заключается в том, что при окислении неорганических соединений, обладающих разным окислительно-восстановительным потенциалом, электроны с окисляемого субстрата включаются в дыхательную цепь на разных энергетических уровнях. Поэтому для обеспечения клетки энергией микроорганизмы вынуждены окислять огромное количество субстрата.
К хемолитотрофным микроорганизмам, получающим энергию за счет окисления неорганических веществ, относятся нитрифицирующие бактерии, железобактерии, тионовые бактерии и др.
С точки зрения лабильности метобализма особый интерес представляют карбоксибактерии. Эти микроорганизмы могут вести себя как автотрофы, потребляя в качестве единственного источника углерода и энергии угарный газ (СО), и как гетеротрофы, используя источником углерода и энергии органические вещества – спирты и органические кислоты.
Суммарно процессы катаболизма и анаболизма карбоксидобактерий-автотрофов можно представить следующим уравнением:
24СО + 11О2 + Н2О→ 23СО2 + (СН2О),
где (СН2О) – символ биомассы.
Из уравнения следует, что окисление СО – неэффективный способ получения энергии, поэтому микроорганизмы вынуждены окислять большое количество субстрата.
Выделение СО современным транспортом и промышленными предприятиями загрязняет атмосферу этим соединением. Единственный путь удаления СО из окружающей среды – утилизация его в обмене микробной клетки.
Анаэробное окисление: нитратное и сульфатное дыхание
Анаэробное окисление встречается только среди представителей царства прокариот. Оно присуще микроорганизмам, способным переходить от аэробного образа жизни к анаэробному, используя в качестве конечного акцептора электронов как молекулярный кислород, так и азот нитратов и серу сульфатов.
Типичным примером таких микроорганизмов являются денитрифицирующие бактерии.
Дыхательная цепь денитрифицирующих бактерий включает все основные ферменты-переносчики электронов, характерные для дыхательной цепи аэробов. Только конечное звено цитохромной системы – цитохромоксидаза замещена у них на нитратредуктазу, катализирующую перенос электронов на азот нитратов. Нитратредуктазы относятся к индуцибельным ферментам, синтезируемым клеткой только в анаэробных условиях при наличии нитратов в среде.
Процесс денитрификации состоит из 4 восстановительных стадий, каждая из которых катализируется соответствующей нитратредуктазой. На первой стадии происходит восстановление нитратов в нитриты:
азот+5 принимая 2 протона и 2 электрона восстанавливается в азот нитритов NО2- +3:
NО3- + 2e- + 2Н+ →NО2- + Н2О.
Далее нитраты восстанавливаются до оксида азота (II), затем до оксида азота (I) и в конечном итоге до молекулярного азота:
NО2- + e- + Н+→ NО + ОН-
2NО + 2e- + 2Н+→ N2О + Н2О
N2О + 2e- + 2Н+ →N2 + Н2О
Использование азота в качестве акцептора электронов позволяет денитрифицирующим бактериям полностью окислять органические вещества субстрата до конечных продуктов СО2 и Н2О. Поэтому энергетический выход нитратного дыхания практически приближается к обычному аэробному окислению.
Поскольку денитрофицирующие бактерии переключаются на нитратное дыхание, только попадая в анаэробные условия, приспособление их к анаэробному образу жизни следует считать эволюционно вторичным и рассматривать как возврат к анаэробиозу от типичного аэробного окисления.
К анаэробному окислению способны и сульфатвосстанавливающие бактерии, относящиеся к родам Desulfotomaculum, Desulfonema, Desulfovibrio и др. Пути получения энергии у сульфатвосстанавливающих бактерий могут быть разными. Это процесс брожения органических веществ, сопровождающиеся образованием АТФ в результате субстратного фосфорилирования, сульфатное дыхание, предусматривающее окисление органических веществ в анаэробных условиях с переносом электронов на серу сульфатов. Бактерии этой гетерогенной группы способны получать энергию также за счет окисления молекулярного водорода, сопряженного с востановлением сульфатов.
Способность сульфатвосстанавливающих бактерий использовать молекулярный водород для получения энергии позволяет отнести их к анаэробным хемолитотрофным микроорганизмам.
В процессе окисления молекулярного водорода получают энергию и метанообразующие бактерии, использующие в качестве акцептора электронов углекислый газ. Для бактерий этой группы СО2 выступает одновременно источником углерода и акцептором электронов:
4Н2 + СО2 →СН4 + 2Н2О
Изучение различных типов катаболизма прокариот дает возможность предположить, что именно совершенствование способов получения энергии клеткой лежит в основе эволюции представителей этого царства.
Наиболее древней группой прокариот являются анаэробные бактерии, добывающие энергию в процессах брожения за счет субстратного фосфорилирования.
Существенным этапом на пути эволюции прокариот следует считать появление фототрофных бактерий, использующих в качестве основного источника энергии солнечный свет и в качестве основного источника углерода СО2.
Развитие фотосинтетиков-аэробов, в первую очередь цианобактерий, привело к обогащению среды молекулярным кислородом. В клетке аэробных бактерий сложилась еще одна система электроного транспорта и сопряженный с ней механизм фосфорилирования – окислительное фосфорилирование.
В настоящее время в царстве прокариот мы встречаемся с поразительным разнообразием типов катаболизма. Однако доминирующим и эволюционно господствующим типом катаболизма, несомненно, являтся аэробное окисление со всем его многообразием доноров и акцепторов.
Дата добавления: 2015-08-14; просмотров: 4151;