Получение трансгенных растений.
Перенос генов в растительные клетки, так же как в клетки животных, и их встраивание в геном растений (трансформация) осуществляются главным образом благодаря специфическим структурам — векторам. Некоторые виды агробактерий (Agrobacteria) могут заражать двудольные растения, вызывая образование опухолей — корончатых галлов. Одним из самых сильных индукторов опухолей служит почвенная бактерия A. tumefaciens. Способность этой бактерии к образованию опухоли связана с большой внехромосомной плазмидой, получившей название Ti-плазмида (от англ. tumor inducing— индуцирующие опухоль). Ti-плазмиды — это естественные векторы для генов, обладающие всеми функциями, необходимыми для переноса, стабильного включения и экспрессии генетической информации в растениях. Они имеют широкий круг хозяев. В бактериальных клетках Ti-плазмиды реплицируются автономно. Эти плазмиды различаются по типу кодируемых опинов —специфических аминокислот, которые используются бактериями в качестве источников азота и углерода. Обычно встречаются плазмиды, кодирующие два типа опинов: либо октопин (октопиновая плазмида), либо нопалин (нопалиновая плазмида).
После заражения часть Ti-плазмиды встречается в хромосомах клеток растения-хозяина. Следовательно, A. tumefaciens встраивает часть своего генома в ДНК растительной клетки и заставляет ее таким способом изменять метаболизм, синтезируя вещества, необходимые для бактерий. Именно это свойство A. tumefaciens и послужило поводом для создания на основе Ti-плазмиды вектора, доставляющего необходимые гены в клетку.
Участок Ti-плазмиды, встречающийся в хромосомах растительных клеток, называется Т-областью в бактерии и Т-ДНК в клетках растений. Т-область включает примерно 10% Ti-плазмиды и содержит гены, отвечающие за индукцию опухоли, синтез опинов и подавление дифференцировки (гормоннезависимый рост клеток). Важно отметить, что все гены, ответственные за перенос и интеграцию генов Т-области, находятся не в ней самой, а рядом — в области вирулентности — vir-области.
Т-области ограничены прямыми повторяющимися последовательностями, и любая ДНК, вставленная между этими повторами, будет принята за Т-область и перенесена в растительную клетку.
Недостаток этих плазмид состоит в том, что некоторые гены, находящиеся в Т-ДНК, заставляют расти клетки растений независимо от гормонов, вносимых в питательную среду, на которой культиви-руются данные клетки. В связи с этим очень трудно регенерировать нормальное растение из клеток, содержащих полную последовательность Т-ДНК. Другой недостаток — большие размеры Ti-плазмиды, из-за которых затруднены какие-либо манипуляции с ней, поэтому вставить ген в плазмиду традиционными методами невозможно.
В настоящее время конструируются производные Ti-плазмиды, в которых оставляют регуляторный участок Т-области, а вместо ее структурных генов вшивают структурную часть гена, который надо ввести в растение. Такие гены с позиции их регенерации безвредны для растений.
Существуют и другие бактерии (A. rhiwgenes), вызывающие усиленное образование корешков при заражении растений. За этот процесс ответственны содержащиеся в них так называемые Ri-плазмиды (от англ. root inducing — индуцирующий корни). Ri-плазмиды выгодно отличаются от Ti-плазмид тем, что они служат естественными безвредными векторами, так как трансформированные с их помощью растительные клетки сохраняют способность к морфогенезу и к регенерации здоровых растений. В связи с этим Ri-плазмиды в данный момент рассматриваются как более перспективные векторы.
В настоящее времяна основе Ti-плазмид конструируются и другие типы векторов (например, промежуточный и бинарный векторы).
Благодаря появлению специфического объекта — изолированных протопластов, т. е. клеток, лишенных целлюлозной стенки, возниклиметоды прямого переноса генов в растение. К таким методам можно отнести:
· трансформация растительных протопластов. Осуществляется благодаря комбинации методик кальциевой преципитации ДНК и слияния протопластов. Для трансформации может быть использован практически любой ДНК-вектор. Донорная ДНК может не содержать специальных биологических сигналов (vir-областей, пограничных областей Т-ДНК);
· культуру протопластов на начальной стадии ее роста заражают агробактериями, которые используют в качестве векторов;
· микроинъекции ДНК. Аналогичен методу микроинъекций животных клеток. Этот метод можно рассматривать как наиболее универсальный. Эффективность трансформации растительных клеток — 10-20 % независимо от типа вектора. Трансформация не видоспецифична, возможен перенос генов в любое растение;
· электропорация. Метод основан на повышении проницаемости биомембран за счет действия импульсов высокого напряжения. В результате молекулы ДНК проникают в клетки через поры в клеточной мембране;
· упаковка в липосомы. Это один из методов, позволяющих защитить экзогенный генетический материал от разрушения нуклеазами растительной клетки. Липосомы — сферические тельца, оболочки которых образованы фосфолипидами;
· метод биологической баллистики. Метод основан на напылении ДНК-вектора на мельчайшие частички вольфрама, которыми затем бомбардируют клетки. Бомбардировка осуществляется с помощью баллистической пушки за счет перепада давления. Часть клеток гибнет, а выжившие клетки трансформируются, затем их культивируют и используют для регенерации растений.
Дата добавления: 2015-08-14; просмотров: 1577;