Волоконно-оптические усилители
Практический успех технологии DWDM, оборудование которой уже работает на магистралях многих ведущих мировых операторов связи, во многом определило появление волоконно-оптических усилителей. Эти оптические устройства непосредственно усиливают световые сигналы в диапазоне 1550 нм, исключая необходимость промежуточного преобразования их в электрическую форму, как это делают регенераторы, применяемые в сетях SDH. Системы электрической регенерации сигналов весьма дороги и, кроме того, зависят от протокола, так как они должны воспринимать определенный вид кодирования сигнала. Оптические усилители, «прозрачно» передающие информацию, позволяют наращивать скорость магистрали без необходимости модернизировать усилительные блоки.
Протяженность участка между оптическими усилителями может достигать 150 км и более, что обеспечивает экономичность создаваемых магистралей DWDM,в которых длина мультиплексной секции составляет на сегодня 600-3000 км при применении от 1 до 7 промежуточных оптических усилителей.
В рекомендации ITU-TG.692 определены три типа усилительных участков, то есть участков между двумя соседними мультиплексорами DWDM:
• L(Long) — участок состоит максимум из 8 пролетов волоконно-оптических линий связи и 7 оптических усилителей, максимальное расстояние между усилителями — до 80 км при общей максимальной протяженности участка 640 км;
• V(Verylong) — участок состоит максимум из 5 пролетов волоконно-оптических линий связи и 4 оптических усилителей, максимальное расстояние между усилителями — до 120 км при общей максимальной протяженности участка 600 км;
• U(Ultralong) — участок без промежуточных усилителей длиной до 160 км.
Ограничения на количество пассивных участков и их длину связаны с деградацией оптического сигнала при его оптическом усилении. Хотя оптический усилитель восстанавливает мощность сигнала, он не полностью компенсирует эффект хроматической дисперсии (то есть распространения волн разной длины с разной скоростью, из-за чего сигнал на приемном конце волокна «размазывается»), а также другие нелинейные эффекты. Поэтому для построения более протяженных магистралей необходимо между усилительными участками устанавливать DWDM-мультиплексоры, выполняющие регенерацию сигнала путем его преобразования в электрическую форму и обратно. Для уменьшения нелинейных эффектов в системах DWDMприменяется также ограничение мощности сигнала.
Оптические усилители используются не только для увеличения расстояния между мультиплексорами, но и внутри самих мультиплексоров. Если мультиплексирование и кросс-коммутация выполняются исключительно оптическими средствами, без преобразования в электрическую форму, то сигнал при пассивных оптических преобразованиях теряет мощность и его нужно усиливать перед передачей в линию.
Новые исследования привели к появлению усилителей, работающих в так называемом L-диапазоне (4-е окно прозрачности), от 1570 до 1605 нм. Использование этого диапазона, а также сокращение расстояния между волнами до 50 ГГц и 25 ГГц позволяет нарастить количество одновременно передаваемых длин волн до 80-160 и более, то есть обеспечить передачу трафика со скоростями 800 Гбит/с- 1,6 Тбит/с в одном направлении по одному оптическому волокну. С успехами DWDMсвязано еще одно перспективное технологическое направление — полностью оптические сети.В таких сетях все операции по мультиплексированию/демультиплексированию, вводу-выводу и кросс-коммутации (маршрутизации) пользовательской информации выполняются без преобразования сигнала из оптической формы в электрическую. Исключение преобразований в электрическую форму позволяет существенно удешевить сеть. Однако возможности оптических технологий пока еще недостаточны для создания полностью оптических масштабных сетей, поэтому их практическое применение ограничено фрагментами, между которыми выполняется электрическая регенерация сигнала.
Рис. 74.Сверхдальняя двухточечная связь на основе терминальных мультиплексоров DWDM
Для организации такой магистрали достаточно в ее конечных точках установить терминальные мультиплексоры DWDM, а в промежуточных точках — оптические усилители, если этого требует расстояние между конечными точками.
В приведенной на рис. 74 схеме дуплексный обмен между абонентами сети происходит за счет однонаправленной передачи всего набора волн по двум волокнам. Существует и другой вариант работы сети DWDM, когда для связи узлов сети используется одно волокно. Дуплексный режим достигается путем двунаправленной передачи оптических сигналов по волокну — половина волн частотного плана передают информацию в одном направлении, половина — в обратном.
Естественным развитием топологии двухточечной цепи является цепь с промежуточными подключениями,в которой промежуточные узлы выполняют функции мультиплексоров ввода-вывода (рис. 75).
Оптические мультиплексоры ввода-вывода(OpticalAdd-DropMultiplexer, OADM) могут вывести из общего оптического сигнала волну определенной длины и ввести туда сигнал этой же длины волны, так что спектр транзитного сигнала не изменится, а соединение будет выполнено с одним из абонентов, подключенных к промежуточному мультиплексору. OADMможет выполнять операции ввода-вывода волн оптическими средствами или путем промежуточного преобразования в электрическую форму. Обычно полностью оптические (пассивные) мультиплексоры ввода-вывода могут отводить небольшое число волн, так как каждая операция вывода требует последовательного прохождения оптического сигнала черезоптический фильтр, который вносит дополнительное затухание. Если же мультиплексор выполняет электрическую регенерацию сигнала, то количество выводимых волн может быть любым в пределах имеющегося набора волн, так как транзитный оптический сигнал предварительно полностью демультиплексируется.
Кольцевая топология(рис. 76) обеспечивает живучесть сети DWDMза счет резервных путей. Методы защиты трафика, применяемые в DWDM, аналогичны методам SDH(хотя в DWDMони пока не стандартизованы). Для того чтобы какое-либо соединение было защищено, между его конечными точками устанавливаются два пути — основной и резервный. Мультиплексор конечной точки сравнивает два сигнала и выбирает сигнал лучшего качества (или сигнал, заданный по умолчанию).
Рис. 75. Цепь DWDMс вводом-выводом в промежуточных узлах
Рис. 76.Кольцо мультиплексоров DWDM
По мере развития сетей DWDMв них все чаще будет применяться ячеистая топология(рис. 77),которая обеспечивает большую гибкость, производительность и отказоустойчивость, чем остальные топологии. Однако для реализации ячеистой топологии необходимо наличие оптических кросс-коннекторов(OpticalCross-Connect, ОХС), которые не только добавляют волны в общий транзитный сигнал и выводят их оттуда, как это делают мультиплексоры ввода- вывода, но и поддерживают произвольную коммутацию между оптическими сигналами, передаваемыми волнами разной длины.
Рис. 77. Ячеистая топология сети DWDM
Дата добавления: 2015-08-11; просмотров: 1602;