Опыт холостого хода трансформатора
Опытом холостого хода называют испытание трансформатора при разомкнутой цепи вторичной обмотки и номинальном напряжении на первичной обмотке. Схема для проведения опыта холостого хода приведена на рис.14.1. Полагая, что измерительные приборы не вносят в режим работы трансформатора сколько-нибудь ощутимых изменений, получаем возможность измерить ряд его параметров, а затем дополнить это ряд расчетами.
Так, показания амперметра при определяют номинальное значение тока холостого хода - . Учитывая, что этот ток составляет 3¸ 10% от номинального тока первичной обмотки для мощных трансформаторов и до 40% для маломощных, можем рассчитать значение номинального тока первичной обмотки
. (14.1)
Кроме этого, при разомкнутой цепи вторичной обмотки всегда . Это значит что
.
Измерив вольтметрами и легко определить коэффициент трансформации
. (14.2)
Мощность потерь в трансформаторе при холостом ходе складывается из мощности потерь в магнитопроводе - Рс и в проводах - Рпр. Мощность потерь в магнитопроводе пропорциональна квадрату магнитной индукции - В2, а значит и квадрату напряжения первичной обмотки - . Так как , то и потери в магнитопроводе соответствуют номинальному значению.
Потери в проводах вторичной обмотки отсутствуют, так как . Потери в проводах первичной обмотки пропорциональны квадрату тока холостого хода ( ). Но ток холостого хода пренебрежимо мал в сравнении с номинальным, поэтому и мощность потерь в проводах ничтожна по сравнению с мощностью потерь в магнитопроводе. Отсюда следует, что показания ваттметра в опыте холостого хода определяют только потери в магнитопроводе - Рс.
Следует учитывать, что потери Рс складываются из потерь на гистерезис и дополнительных потерь на вихревые токи, потерь в деталях конструкции и потерь из-за вибрации листов стали магнитопровода. Однако, эти дополнительные потери не превышают 20% от общих.
В ряде случаев важно знать, как изменится ток холостого хода трансформатора при изменении напряжения на первичной обмотке. Зависимость приведена на рис. 14.2. Она называется характеристикой холостого хода трансформатора.
V |
A |
W |
V |
Тр |
U (t) |
Рис. 14.1 |
0,8 |
1,2 |
I |
1X |
I |
1X |
н |
U |
1X |
U |
1H |
Рис. 14.2 |
2. Опыт короткого замыкания
трансформатора
Опытом короткого замыкания называется испытание трансформатора при короткозамкнутой цепи вторичной обмотки и номинальном токе первичной обмотки. Схема для проведения опыта короткого замыкания приведена на рис. 14.3. Опыт проводится для определения номинального значения тока вторичной обмотки, мощности потерь в проводах и падения напряжения на внутреннем сопротивлении трансформатора.
Рис. 14.3 |
А |
A |
W |
V |
Тр |
U (t) |
Величина напряжения первичной обмотки в опыте короткого замыкания мала и составляет 5 ¸ 10% от номинального. Поэтому и действующее значение ЭДС вторичной обмотки Е2 составляет 2 ¸ 5%. Пропорционально значению ЭДС уменьшается магнитный поток, а значит и мощность потерь в магнитопроводе - Рс . Отсюда следует, что показания ваттметра в опыте короткого замыкания, практически определяют только потери в проводах Рпр, причем:
. (14.3)
Выразим ток I2К через приведенный ток :
.
Учтем, что , а также что .
Тогда выражение (11.3) перепишем в виде:
, (14.4)
где RК - активное сопротивление трансформатора в режиме короткого замыкания, причем:
. (14.5)
Значение активного сопротивления трансформатора позволяет рассчитать его индуктивное сопротивление:
.
При точном расчете нужно учитывать, что RК зависит от температуры. Поэтому полное сопротивление трансформатора определяют приведенным к температуре 750С, т.е.:
.
Теперь легко определить падение напряжения на внутреннем сопротивлении трансформатора - :
.
На практике пользуются приведенным значением UК, в процентах, обозначая его звездочкой, т.е.:
. (14.6)
Это значение приводят на паспортном щитке трансформатора.
Знание внутреннего сопротивления трансформатора позволяет представить его схему замещения в виде рис.14.4. Векторная диаграмма, соответствующая этой схеме приведена на рис. 14.5.
Векторная диаграмма позволяет определить уменьшение напряжения на выходе трансформатора D U за счет падения напряжения на его комплексном сопротивлении. Величина D U определяется как расстояние между прямыми, выходящими из точек начала и конца вектора и параллельными оси абсцисс. Из диаграммы видно, что эта величина складывается из катетов двух прямоугольных треугольников, гипотенузы которых и , а острые углы равны j2.
Ů |
U' |
İ |
I' |
Z |
K |
Рис. 14.4 |
X |
K |
I |
1K |
φ |
Ī' |
Ū' |
ΔU |
Z |
K |
I |
1K |
R |
K |
I |
1K |
φ |
φ |
Рис. 14.5 |
Поэтому:
.
На практике пользуются относительной величиной DU, в процентах, обозначенной звездочкой, т.е.:
. (14.7)
Для мощных трансформаторов (SH> 1000 В×А) опыт короткого замыкания может служить для контроля коэффициента трансформации. Для таких трансформаторов в режиме короткого замыкания током холостого хода можно пренебречь, считая:
.
Поэтому:
. (14.8)
Последнее выражение тем точнее, чем больше мощность трансформатора. Однако оно не приемлемо для маломощных трансформаторов.
Дата добавления: 2015-08-11; просмотров: 1257;