Структура нуклеиновых кислот
Для понимания ряда особенностей структуры ДНК особое значение имели закономерности состава и количественного содержания азотистых оснований, установленные впервые Э. Чаргаффом. Оказалось, что азотистые основания ДНК обычно варьируют у разных видов организмов, однако почти не претерпевают изменений у одного и того же вида в процессе развития или в зависимости от изменений окружающей среды либо характера питания. Показано также, что ДНК, выделенная из разных тканей одного и того же вида, имеет одинаковый состав азотистых оснований. Полученные количественные соотношения были названы правилами Чаргаффа. При анализе состава очищенной ДНК, выделенной из разных источников, были сделаны следующие выводы:
1 молярная доля пуринов равна молярной доле пиримидинов:
2 количество аденина и цитозина равно количеству гуанина и тимина:
3 количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина: А = Т и Г = Ц; соответственно
4 существенным для характеристики вида (таксономическое значение) оказался так называемый коэффициент специфичности, отражающий отношение
Это отношение часто выражают в молярных процентах (Г+Ц), или процентах ГЦ-пар. Для животных и большинства растений этот коэффициент ниже 1 (от 0,54 до 0,94), у микроорганизмов он колеблется в значительных пределах (от 0,45 до 2,57).
Данные, полученные А.Н.Белозерским и его учениками, свидетельствуют о существовании в природе АТ-типа ДНК (у хордовых и беспозвоночных животных, высших растений, ряда бактерий, дрожжевидных организмов) и ГЦ-типа ДНК (у недрожжевидных грибов, актиномицетов, ряда бактерий и вирусов).
Известно, что структурными единицами нуклеиновых кислот являются мономерные молекулы – мононуклеотиды. Следовательно, нуклеиновые кислоты представляют собой полинуклеотиды. Это продукты полимеризации мононуклеотидов, число и последовательность расположения которых в цепях ДНК и РНК определяются в строгом соответствии с программой, заложенной в молекуле матрицы. Мононуклеотиды легко образуются при гидролизе ДНК и РНК в присутствии нуклеаз, состоят из трех специфических компонентов: азотистого основания, углевода и фосфорной кислоты. В этой «триаде» мононуклеотида углевод занимает среднее положение. Соединения азотистого (любого) основания и углевода (рибозы или дезоксирибозы), получившие название нуклеозидов, легко образуются из мононуклеотида при гидролитическом отщеплении фосфорной кислоты в присутствии щелочи или при участии специфических ферментов – нуклеотидаз.
Нуклеозиды содержат пуриновое или пиримидиновое основание, соединенное с углеводом N-гликозидной связью. В составе нуклеиновых кислот обнаруживаются только β-нуклеозиды. Примером могут служить два мононуклеотида: аденозин-5'-монофосфорная кислота (АМФ) и цитидин-5'-монофосфорная кислота (ЦМФ):
R у 2' углерода представлен Н- или ОН-группой в зависимости от типа нуклеиновой кислоты – ДНК или РНК. В образовании N-гликозидной связи в пуриновых нуклеотидах принимают участие N-9 пурина и С-1' пентозы, а в пиримидиновых нуклеотидах – N-1 пиримидина и С-1' пентозы. Чтобы отличить углеродные атомы рибозы или дезоксирибозы от углеродных атомов, входящих в состав пуриновых и пиримидиновых оснований, первые принято обозначать символом «штрих»: например, атомы у 3-го и 5-го углерода обозначают С-3' и С-5' или, чаще, 3' и 5'.
Следует отметить, что среди продуктов ферментативного гидролиза ДНК и РНК обнаруживаются, помимо нуклеозид-5'-монофосфатов, также нуклеозид-3'-монофосфаты.
Таблица 6 - Состав нуклеозидов и мононуклеотидов(для РНК они называются рибонуклеотидами, а для ДНК – дезоксирибонуклеотидами)
Азотостые основания | Нуклеозиды (основание +углевод) | Мононуклеотиды (нуклеозиды + Н3РО4) | Сокращенное название | |
Пуриновые | Аденин | Аденозин | Аденозинмонофосфат (адениловая кислота) | АМФ |
Гуанин | Гуанозин | Гуанозинмонофосфат (гуаниловая кислота) | ГМФ | |
Пиримидиновые | Урацил | Уридин | Уридинмонофосфат (уридиловая кислота) | УМФ |
Цитозин | Цитидин | Цитидинмонофосфат (цитидиловая кислота) | ЦМФ | |
Тимин | Тимидин | Тимидинмонофосфат (тимидиловая кислота) | ТМФ |
Мононуклеотиды и их производные, а также динуклеотиды присутствуют в клетках в свободном виде и играют важную роль в обмене веществ. В частности, нуклеотидную структуру имеют многие коферменты, включая коферменты оксидоредуктаз. Мононуклеотиды, присоединяя еще один остаток фосфата, образуют фосфоангидридную связь (наподобие связи, имеющейся в пирофосфате) и превращаются в нуклеозиддифосфаты (соответственно они обозначаются сокращенно АДФ, ГДФ, УДФ, ЦДФ и ТДФ). Последние, присоединяя еще один остаток фосфата, образуют нуклеозидтрифосфаты (соответственно обозначаются АТФ, ГТФ, УТФ, ЦТФ и ТТФ).
Следует особо указать, что только свободные нуклеозидтрифосфаты в клетках являются предшественниками ферментативного синтеза ДНК и РНК. Однако в клетках имеются свободные, также природные нуклеозидтрифосфаты, не принимающие участия в синтезе белка, но выполняющие жизненно важные функции. В частности, одной из важнейших функций нуклеозидтрифосфатов и особенно АТФ является их участие в биоэнергетике всех живых организмов. Приводим схему образования молекул аденозинди- и аденозинтрифосфатов (некоторые атомы водорода, как и углерода, в пуриновом ядре и в кольце рибозы опущены):
В медицинской практике, в частности в онкологии, нашли широкое применение синтетические аналоги как азотистых оснований, так нуклеозидов и нуклеотидов. К наиболее распространенным лекарственным препаратам – аналогам пуриновых и пиримидиновых оснований (и соответствующим нуклеотидам) относятся 5-фторурацил, 6-тио- и 6-меркаптопурин, 8-азагуанин, 6-азауридин и 6-азацитидин, а также 5-йодпроизводное дезоксиуридина.
Помимо сокращенных названий и обозначений нуклеозидов и нуклеотидов, приняты буквенные обозначения нуклеозидов (и нуклеотидов): в частности, для аденозина (АМФ) это А, для гуанозина (ГМФ) – Г, для цитидина (ЦМФ) – Ц, для уридина (УМФ) – У, для тимидина (ТМФ) – Т. Пользуясь этими символами, приведенный выше дирибонуклеозидмонофосфат можно обозначить как Г–Т. Заметим, что как по структуре, так и по свойствам Г–Т и Т–Г будут сильно отличаться друг от друга (как и в случае дипептидов).
Дата добавления: 2015-08-11; просмотров: 1103;