Ориентирование
Ориентировать линию местности значит – определить ее направление относительно какого – либо другого направления, принимаемого за исходное. В геодезии исходными являются: истинный (географический) меридиан, магнитный меридиан и осевой меридиан зоны. Для ориентирования линий служат углы: азимут, румб и дирекционный угол.
Истинный азимут линии это горизонтальный угол, отсчитываемый от северного направления истинного меридиана или параллельной ему линии по ходу часовой стрелки до направления данной линии местности.
Плоскость истинного меридиана проходит через отвесную линию в данной точке и ось вращения Земли, определяется из астрономических наблюдений. Горизонтальной проекцией истинного меридиана является полуденная линия. Изменяются азимуты от 0˚ до 360˚. В геодезии различают прямое направление линии АВ и обратное ВА (рис. 7). Соответственно различают истинный азимут прямого направления (прямой АВ) и истинный азимут обратного направления (обратный АВ). Для одной точки они отличаются ровно на 180˚: Апр.=Аобр.±180˚.
γзап.
А Аспр. γвост.
С АДпр.
Асобр. Д АЕпр.
АДобр. Е В
АЕобр.
Рис. 7. Истинный азимут
Асобр.=Аспр.+ 180˚; АДобр.= АДпр.+ 180˚; АЕобр.=АЕпр. + 180˚; АДобр.=АСпр.+ 180˚-γзап.; АЕобр.=АСпр.+180˚+γвост.
Из рис. 7 видно, что истинные азимуты одной и той же линии в различных ее точках отличаются на величину γ, а прямой и обратный азимуты – на (180˚+γ).
Магнитные азимуты линий есть горизонтальные углы, отсчитываемые от северного направления магнитного меридиана или линии ему параллельной по ходу часовой стрелки до направления заданной линии местности. Направление магнитного меридиана определяется магнитной стрелкой, оно не совпадает с направлением истинного меридиана в данной точке на угол δ, называемый склонением магнитной стрелки. Склонение может быть западным (-) и восточным (+), в пределах России δ меняется от 0˚до ±15˚.
Существует связь между истинным и магнитным азимутами: Аист.=Амаг.+δ. Все вышесказанное об истинных азимутах в равной мере относится и к магнитным азимутам.
Дирекционный угол есть горизонтальный угол, отсчитываемый по ходу часовой стрелки от северного направления осевого меридиана или линии, ему параллельной, до направления данной линии местности. Изменяется он от 0˚ до 360˚. Дирекционные углы одной и той же линии в различных ее точках одинаковы, а прямые и обратные дирекционные углы всегда отличаются ровно на 180˚ (рис. 8): α=αс= αД; αД΄=α+180˚; αс΄=αД+180˚. Поэтому на практике используется именно α.
А
αс
αД
С
αс΄ αЕ
Д
αД΄ В
Е αЕ'
Рис. 8. Дирекционный угол
Поскольку меридианы в различных точках не параллельны и сходятся к полюсам, то их направления, выраженные полуденными линиями, тоже не будут параллельны. Этот угол между полуденными линиями называется в геодезии сближением меридианов γ. Оно может быть западным (в точке С) и восточным (в точке Д). В пределах зоны оно не может быть более 3˚. Условились считать, что γвост.+, γзап.. В пределах координатной зоны линии, параллельные осевому меридиану, не совпадают с географическими меридианами, а образуют с ними некоторый угол, называемый гауссовым сближением меридианов. В восточной половине зоны линии, параллельные осевому меридиану, отклоняются к востоку от географического меридиана, сближение называется восточным и обозначается знаком «плюс». В западной половине зоны линии отклоняются к западу от географического меридиана, сближение называется западным и обозначается знаком «минус». γ=Δλ·sinφ, φ=0˚ на экваторе, φ=90˚ на полюсе. В пределах 6˚-ой зоны γmах=3˚.
Румбом линии называется острый горизонтальный угол, отсчитываемый от ближайшего направления меридиана – северного или южного до направления линии местности. В зависимости от используемого меридиана румбы бывают истинные, магнитные и осевые. Они изменяются от 0˚ до 90˚ и имеют названия по сторонам света (четвертям): СВ, ЮВ, ЮЗ, СЗ. Прямой и обратный румбы в данной точке равны по величине, но противоположны по наименованию. Истинные и магнитные румбы отличаются, кроме того, на величину склонения и сближения меридианов, как и азимуты.
От азимутов и дирекционных углов можно переходить к румбам и обратно,
используя очевидные формулы (рис. 9):
СВ: r=α
ЮВ: r=180˚-α
ЮЗ: r=α-180˚
СЗ: r=360˚-α.
360º С 0º СВ
α
СЗ r
r
α 90º В
З
270º α
α
ЮЗ r r
ЮВ
180º
Рис. 9. Схема румбов и дирекционных углов
Дата добавления: 2015-08-11; просмотров: 1029;