Плоская задача. Действие равномерно распределенной нагрузки.
Схема для расчета напряжений в основании в случае плоской задачи при действии равномерно распределенной нагрузки интенсивностью показана на рис. 3.6.а.
Точные выражения для определения компонент напряжений в любой точке упругого полупространства были получены Г. В. Колосовым в виде:
; ; , (3.9)
где , , - коэффициенты влияния, зависящие от безразмерных параметров и ; и – координатные точки, в которой определяются напряжения; – ширина полосы загружения.
На рис. 3.7. а-в показано в виде изолиний распределение нарпряжении , и в массиве грунте для случая плоской задачи.
В некоторых случаях при анализе напряженного состояния основания оказывается удобнее пользоваться главными напряжениями. Тогда значения главных напряжений в любой точке упругого полупространства под действием полосовой равномерно распределенной нагрузки можно определить по формулам И. Х. Митчелла:
, (3.10)
где - угол видимости, образованный лучами, выходящими из данной точки к краям загруженной полосы (рис.3.6.б).
Дата добавления: 2015-08-08; просмотров: 1229;