Системы счисления. Вопросы, касающиеся записи чисел и действий с ними, относятся к арифметике

Вопросы, касающиеся записи чисел и действий с ними, относятся к арифметике. Она вводит в этой области следующую сис­тему понятий.

• Набор правил представления (изображения) и наименования чисел называ­ется системой счисления.

• Знаки, используемые для записи чисел, называют цифрами.

• Если значение, описываемое цифрой, зависит от ее положения в записи чис­ла, система счисления называется по­зиционной.

• Положение цифры в записи числа в позиционной системе счисления назы­вают разрядом.

Основным параметром, характеризую­щим ту или иную систему счисления, явля­ется её основание. Основание позиционной системы счисления — это множитель, ко­торый определяет изменение значения, описываемого цифрой, при переносе её в следующий по старшинству разряд. Следу­ющий по старшинству разряд располагается слева от данного. Основание системы счисления совпадает с количеством разных цифр, используемых в ней для записи чисел.

В математике и в быту общепринята по­зиционная десятичная система счисле­ния. Единица старшего разряда (например, в числе 10) соответствует десяти единицам младшего разряда. Запись чисел производится при помощи десяти разных цифр: О, 1,2,3,4,5,6,7,8,9.

Для представления числовых данных в компьютере используется двоичная систе­ма счисления. Основание этой системы равно двум. Соответственно, для записи чисел в этой системе используются только два символа (цифры): 0 и 1.

Если в разряде числа содержится мини­мальное число, для которого в системе счисления определён символ, значение это­го разряда называется пустым.Если в раз­ряде числа содержится максимальное чис­ло, для которого в системе счисления определён символ, значение этого разряда называется полным.Таким образом, осо­бенностью двоичной системы счисления является то, что двоичные разряды всегда являются либо полными, либо пустыми.

Если при записи информации использо­вано числовое кодирование, а запись полу­ченных чисел выполнена в двоичной сис­теме счисления, можно сделать следующие выводы.

1. Поскольку разряд числа, записанного в двоичной системе, всегда либо по­лон, либо пуст и, в отличие от других систем счисления, не имеет промежуточных состояний, можно утверждать, что неопределённость значения двоичного разряда теоретически яв­ляется минимально возможной и рав­на 1/2. В любых иных системах счис­ления неопределённость значения разряда выше, поскольку в них возможны промежуточные состояния разряда.

2. Поскольку неопределённость состоя­ния разряда двоичного числа теоретиче­ски является минимально возможной, можно утверждать, что в закрытой информационной системе (только в закрытой) количество информации, снимающее эту неопределённость, является минимально возможным регистрируемым количеством инфор­мации.

3. Поскольку при записи информации образуются данные, мы можем утверждать, что содержание двоичного раз­ряда является минимальным количе­ством данных, которым может быть представлено минимальное количе­ство информации при её записи.Из сказанного вытекает, что двоичный разряд можно считать:

а) минимальной единицей измерения количества данных;

б) минимальной единицей представле­ния информации при записи.

Полезные особенности двоичного разря­да были заслуженно отмечены. Он получил индивидуальное название -- бит. Слово «бит» происходит от английского слова bit, которое, в свою очередь, является произ­водным от словосочетания bynary digit, что на русский язык переводится как двоич­ная цифра.

Бит — это двоичный разряд. Его инфор­мационным содержанием является его состояние (полон/пуст). Допустимо также говорить, что бит установлен/сброшен, включён/выключен. Можно говорить и о его числовом значении (1 или 0).

В вычислительной технике наиболее устоявшейся является единица, называе­мая байтом. Байт — это композиция из восьми взаимосвязанных битов.

Байт, в отличие от бита, может быть весь­ма разнообразным по информационному содержанию. Прежде всего, его информа­ционным содержанием являются 256 раз­личимых состояний (28 = 256). При коди­ровании положительных целых чисел информационным содержанием байта является число от 0 до 255. Но поскольку кодировать можно не только положитель­ные числа, байт может выражать отрица­тельное число, символ алфавита, цвет точ­ки, высоту звука и многое другое.

Обратите особое внимание на то, что байт — это не группа из восьми последова­тельных битов, а именно композиция.Байт имеет собственное информационное содержание.

Байт — это технический термин, связан­ный с определённым уровнем развития техники. Байт не всегда считался восьми­разрядным. В прошлом существовали компьютеры, в которых данные представ­лялись семиразрядными и шестиразряд­ными байтами. В настоящее время пред­ставление о байте как о восьмибитовой композиции общепринято, и нет основа­ний предполагать, что оно может изме­ниться в ближайшем будущем,

Производными единицами измерения количества данных являются: килобайт (Кбайт), мегабайт (Мбайт), гигабайт (Гбайт), терабайт (Тбайт) и другие. В математике и физике принято считать, что приставка кило- перед обозначением единицы изме­рения обозначает более крупную единицу измерения, отличающуюся от исходной в тысячу раз (приставка мега — в миллион раз). Однако в информатике используется иной подход. Здесь соответствие между основной единицей измерения и производ­ной устанавливается через масштабный множитель, являющийся степенью двой­ки. Так, например, 1 Кбайт = 210 байт, то есть, если быть точным, 1Кбайт = 1024 бай­та. Как видите, отличие от тысячи невели­ко (менее 3%), и для инженерных задач полученная погрешность вполне приемле­ма. Но при переходе к более крупным про­изводным единицам точность начинает быстро падать, и это явление приходится учитывать.

1 Кбайт = 2ю байт = 1024 байт

1 Мбайт = 220 байт = 1 048 576 байт

1 Гбайт = 230 байт = 1 073 741 824 байт

 








Дата добавления: 2015-08-08; просмотров: 987;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.