СУЩНОСТЬ ПРОЦЕССА

Сталь является основным видом металла, применяемым для создания современной техники. Это объясняется тем, что сталь обладает высокими прочностью и износостойкостью, хорошо сохраняет приданную форму в изделиях, сравнительно легко поддается различным видам обработки. Кроме того, основной компонент стали - железо - является широко распространенным элементом в земной коре.

Сущностью любого металлургического передела чугуна в сталь является снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы в процессе плавки.

Основными материалами для производства стали являются передельный чугун и стальной лом (скрап). Содержание углерода и примесей в стали значительно ниже, чем в чугуне (табл. 2.1).

В процессе плавки стали происходит взаимодействие между металлической, шлаковой и газовой фазами и футеровкой плавильного агрегата, различными по агрегатному состоянию и химическому составу. В результате этого взаимодействия осуществляется переход химических элементов из одной фазы в другую. Обменные процессы сопровождаются химическими превращениями, главным образом на границе металлической фазы со шлаком. Металлическая фаза состоит из расплава химических элементов, шлаковая - из расплава оксидов и их соединений. Поэтому переход элемента из одной фазы в другую возможен только при протекании химической реакции образования или восстановления оксида. Так как примеси по своим физико-химическим свойствам различны, то для их удаления в плавильном агрегате создают определенные условия, используя основные законы физической химии.

В соответствии с законом действующих масс скорость химических реакций пропорциональна концентрации реагирующих веществ. Поскольку в наибольшем количестве в чугуне содержится железо, то оно окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильной печи:

Fe + 1/2О2 = FeO + Q кДж. (1)

Одновременно с железом окисляются Si, P, С, Мn и др.

Образующийся оксид железа при высоких температурах отдает свой кислород более активным элементам - примесям в чугуне, окисляя их:

2FeO + Si = SiO2 + 2Fe + Q1 кДж; (2)

5FeO + 2P = P2O5 + 5Fe + Q2 кДж; (3)

FeO + Mn = MnO + Fe + Q3 кДж; (4)

FeO + С = CO + Fe - Q4 кДж. (5)

Чем больше оксида железа содержится в жидком металле, тем активнее окисляются примеси. Для ускорения окисления примесей в сталеплавильную ванну добавляют железную руду, окалину, содержащие много оксидов железа. Таким образом, основное количество примесей окисляется за счет кислорода оксида железа.

Таблица 2.1.

Состав передельного чугуна и низкоуглеродистой стали, %

Материал С Si Мn Р S
Передельный чугун 4. ..4,4 0,56... 1,26 До 1,75 0,10... 0,3 0,03... 0,07
Сталь низкоуглеродистая 0,12... 0,25 0,12... 0,3 0,3... 0,9 0,05 0,050

 

Скорость окисления примесей зависит не только от их концентрации, но и от температуры металла и подчиняется принципу Ле Шателье, в соответствии с которым химические реакции, выделяющие теплоту, протекают интенсивнее при более низких температурах или при некотором понижении температуры, а реакции, поглощающие теплоту, протекают активнее при высоких температурах или при некотором повышении температуры. Поэтому в начале плавки, когда температура металла невысока, интенсивнее идут процессы окисления кремния, фосфора, марганца, протекающие с выделением теплоты, а углерод интенсивно окисляется только при высокой температуре металла (в середине и конце плавки).

После расплавления шихты в сталеплавильной печи образуются две несмешивающиеся среды: жидкий металл и шлак. Шлак представляет собой сплав оксидов с незначительным содержанием сульфидов. Образование шлака связано с окислением элементов металлической фазы во время плавки и образованием различных оксидов с меньшей плотностью, чем металл, собирающихся на его поверхности. В соответствии с законом распределения (закон Нернста), если какое-либо вещество растворяется в двух соприкасающихся, но несмешивающихся жидкостях, то распределение вещества между этими жидкостями происходит до установления определенного соотношения (константы распределения), постоянного для данной температуры. Поэтому большинство компонентов (Mn, Si, P, S) и их соединения, растворимые в жидком металле и шлаке, будут распределяться между металлом и шлаком в определенном соотношении, характерном для данной температуры.

Нерастворимые соединения в зависимости от плотности будут переходить либо в шлак, либо в металл. Изменяя состав шлака, можно менять соотношение между количеством примесей в металле и шлаке так, что нежелательные примеси будут удаляться из металла в шлак. Убирая шлак с поверхности металла и наводя новый путем подачи флюса требуемого состава, можно удалять вредные примеси (серу, фосфор) из металла. Поэтому регулирование состава шлака с помощью флюсов является одним из основных путей управления металлургическими процессами.

Используя изложенные законы, процессы выплавки стали осуществляют в несколько этапов.

Первый этап- расплавление шихты и нагрев ванны жидкого металла. На этом этапе температура металла невысока; интенсивно происходят окисление железа, образование оксида железа и окисление примесей Si, P, Мn по реакциям (1) - (4). Наиболее важная задача этого процесса - удаление фосфора (одной из вредных примесей в стали). Для этого необходимо проведение плавки в основной печи, в которой можно использовать основной шлак, содержащий СаО. Такой шлак должен обладать высокой основностью, т.е. способностью поглощать из металла и удерживать фосфор и серу. Основность (B) обычно определяют отношением концентрации основных и кислых оксидов:

В = (% СаО)/(% SiO2)

или

В = (% СаО)/(% SiO2 + Р2О5).

Основность шлака регулируется в соответствии с температурой, и в конце мартеновской плавки она составляет 2,7 ... 3 и 3 ... 4 в кислородно-конвертерном процессе. Выделяющийся по реакции (3) фосфорный ангидрид образует с оксидом железа нестойкое соединение (FeO)3 · Р2О5. Оксид кальция СаО - более сильное основание, чем оксид железа, поэтому при невысоких температурах связывает ангидрид P2O5, переводя его в шлак:

2[Р] + 5(FeO) + 4(CaO) ↔ (4СаО · P2O5)+5[Fe]. (6)1

 

1 Принято компонент, находящийся в растворе металла, обозначать в прямых скобках [Р], а находящийся в растворе шлака - в круглых скобках (СаО).

 

Реакция образования фосфорного ангидрида протекает с выделением теплоты, поэтому в соответствии с принципом Ле Шателье для удаления фосфора из металла необходимы невысокие температуры ванны металла и шлака. Из реакций (3) и (6) следует также, что для удаления фосфора из металла необходимо достаточное содержание в шлаке FeO, т.е. шлак должен обладать высокой окислительной способностью - передавать кислород металлу, находящемуся с ним в контакте. Окислительная способность шлака определяется активностью содержащихся в нем оксидов железа (главным образом FeO). Так, шлаки с высоким содержанием оксидов железа передают кислород металлу, а с низким - способны извлекать его. Для повышения содержания FeO в шлаке в сталеплавильную ванну в этот период плавки добавляют окалину, железную руду, наводя железистый шлак. По мере удаления фосфора из металла в шлак содержание фосфора в шлаке возрастает. В соответствии с законом распределения удаление фосфора из металла замедляется. Поэтому для более полного удаления фосфора из металла с его зеркала убирают шлак, содержащий фосфор, и наводят новый со свежими добавками СаО.

Второй этап - "кипение" металлической ванны - начинается по мере ее прогрева до более высоких, чем на первом этапе, температур. При повышении температуры металла в соответствии с принципом Ле Шателье более интенсивно протекает реакция (5) окисления углерода, происходящая с поглощением теплоты. Поскольку в металле содержится больше углерода, чем других примесей (см. табл. 2.1), то в соответствии с законом действующих масс для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород.

Образующийся в металле оксид железа реагирует с углеродом по реакции (5), а пузырьки оксида углерода СО выделяются из жидкого металла, вызывая "кипение" ванны. При "кипении" уменьшается содержание углерода в металле до требуемого, выравнивается температура по объему ванны, частично удаляются неметаллические включения, прилипающие к всплывающим пузырькам СО, а также газы, проникающие в пузырьки СО. Все это способствует повышению качества металла. Поэтому этап "кипения" ванны является основным в процессе выплавки стали.

В этот же период создаются условия для удаления серы из металла. Сера в стали находится в виде сульфида [FeS], который растворяется также в основном шлаке (FeS). Чем выше температура, тем большее количество FeS растворяется в шлаке, т.е. больше серы переходит из металла в шлак. Сульфид железа, растворенный в шлаке, взаимодействует с оксидом кальция, также растворенным в шлаке:

(FeS) + (СаО) = (CaS) + (FeO). (7)

Эта же реакция протекает на границе металл - шлак между сульфидом железа в стали [FeS] и (СаО) в шлаке:

[FeS] + (СаО) = (CaS) + (FeO). (8)

Образующееся соединение (CaS) растворимо в шлаке, но не растворяется в железе, поэтому сера удаляется в шлак.

Как следует из реакций (7) и (8), чем больше в шлаке (СаО) и меньше (FeO), тем полнее удаляется из стали сера. Поэтому при плавке в основных печах можно снизить содержание углерода и серы в стали, выплавлять сталь из шихты любого химического состава.

В сталеплавильных печах с кислой футеровкой нет условий для уменьшения количества фосфора и серы в стали, так как использовать основной шлак с высоким содержанием (СаО) нельзя из-за разрушения футеровки, а содержание (FeO) в шлаке недостаточно. Поэтому в кислых печах можно выплавлять сталь только из шихтовых материалов с малым количеством серы и фосфора.

Третий этап(завершающий) - раскисление стали - заключается в восстановлении оксида железа, растворенного в жидком металле. При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород - вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах. Сталь раскисляют двумя способами: осаждающим и диффузионным.

Осаждающее раскисление осуществляют введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы Mn, Si, A1 и др., которые в данных условиях обладают большим сродством к кислороду, чем железо. В результате раскисления восстанавливается железо и образуются оксиды MnO, SiO2, A12O3 и другие, которые имеют меньшую плотность, чем сталь, и удаляются в шлак. Однако часть их может остаться в стали, что понижает ее свойства.

Диффузионное раскисление осуществляют раскислением шлака. Ферромарганец, ферросилиций и другие раскислители в мелкоразмельченном виде загружают на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке. В соответствии с законом распределения оксид железа, растворенный в стали, начнет переходить в шлак. Образующиеся при таком способе раскисления оксиды остаются в шлаке, а восстановленное железо переходит в сталь, что уменьшает содержание в ней неметаллических включений и повышает ее качество.

При выплавке в кислой печи процесс плавки протекает при кислом шлаке (55 ... 58 % SiO2). Количество FeO и МnО в шлаке уменьшается в результате восстановления этих оксидов. Активность FeO в кислых шлаках значительно ниже, чем в основных, и окислительное действие их слабее, т.е. создаются благоприятные условия для раскисления стали, а именно: кремнезем, обладающий сильными кислотными свойствами, связывает FeO в соединение типа FeO · SiO2. После длительной выдержки под кислым шлаком содержание оксида железа в стали резко уменьшается, и окончательно сталь раскисляют небольшой добавкой ферромарганца.

В зависимости от степени раскисленности выплавляют спокойные, кипящие и полуспокойные стали.

Спокойная сталь получается при полном раскислении в печи и ковше.

Кипящая сталь раскислена в печи неполностью. Ее раскисление продолжается в изложнице при затвердевании слитка благодаря взаимодействию FeO и углерода, содержащихся в металле. Образующийся при реакции FeO + С = Fe + CO оксид углерода выделяется из стали, способствуя удалению из стали азота и водорода. Газы выделяются в виде пузырьков, вызывая ее "кипение". Кипящая сталь не содержит неметаллических включений - продуктов раскисления, поэтому обладает хорошей пластичностью.

Полуспокойная сталь имеет промежуточную раскисленность между спокойной и кипящей. Частично она раскисляется в печи и в ковше, а частично в изложнице благодаря взаимодействию оксида железа и углерода, содержащихся в стали.

Легирование стали осуществляют введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы (Ni, Co, Мо, Си), сродство к кислороду у которых меньше, чем у железа, при плавке и разливке практически не окисляются, и поэтому их вводят в печь в любое время плавки (обычно вместе с остальной шихтой). Легирующие элементы, у которых сродство к кислороду больше, чем у железа (Si, Mn, Al, Cr, V, Ti и др.), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда непосредственно в ковш.

 

Рис. 2.2. Схема технологических процессов производства стали

 

 








Дата добавления: 2015-08-04; просмотров: 3455;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.013 сек.