Клеточная оболочка
Клеточная оболочка - структурный элемент растительной клетки, располагающийся по ее периферии, снаружи от плазмалеммы. Она защищает протопласт и способствует сохранению формы клетки. Клеточная оболочка была обнаружена ранее других элементов клетки, и на заре развития анатомии растений ей уделяли большее внимание, чем другим клеточным структурам. Затем интерес к ее исследованию уменьшился. Однако в 21 веке благодаря разработке новых методов утилизации отходов древесного производства, использованию целлюлозы, лигнина в народном хозяйстве и медицине, а также благодаря появлению новых совершенных методов исследования вновь усилилось внимание ученых к изучению клеточной оболочки. Уделить внимание ее химизму и структуре в нашем курсе профессиональная задача. В курсе заводской технологии, изучающей условия экстракции биологически активных веществ из растительного сырья, необходимо располагать сведениям и о физико-химической природе клеточной оболочки, ее химизме, чтобы определить степень измельченности сырья и другие факторы, влияющие на процесс экстракции.
Морфология клеточной оболочки. Клеточная оболочка состоит из первичной (1), вторичной оболочки (2) и срединной пластинки (3), склеивающей рядом расположенные клетки (рис. l9). Первичная оболочка очень эластичная, тонкая. Она способна растягиваться и увеличивать объем клетки во много раз. Она сохраняется в течение жизни клеток образовательных тканей. Наличие вторичной оболочки – особенность клеток постоянных специализированных тканей. Это живые паренхимные клетки листа, корня, стебля, это клетки эпидермы листа и т.д. Они прошли этап дифференциации и имеют четко выраженную морфологию. Вторичную по структуре и химически видоизмененную клеточную оболочку имеют и мертвые клетки, выполняющие механическую и проводящую функции (древесные волокна, сосуды, трахеиды). Клетки меристематические сообщаются через пористые мелкие отверстия перфорации, а живые специализированные клетки через простые поры (неутолщенные участки первичной оболочки, участки, где отсутствует вторичная оболочка) с помощью плазмодесм. Вторичная оболочка резко прерывается у краев поровой камеры, диаметр которой не изменяется по всей толщине вторичной оболочки. Поры такого типа называются простыми (рис. 21, 22). В водопроводящих элементах – сосудах и трахеидах – вторичная оболочка нередко нависает над камерой в виде свода, образуя окаймление. Такие поры получили название окаймленных пор (рис. 20, 21, 23). Торус и эластичная маргинальная зона обеспечивают автоматическую работу окаймленной поры.
Химический состав и структура клеточной оболочки. В состав клеточной оболочки входит целлюлоза [(СбН10О5)n]х, гемицеллюлоза (С6Н10О5)n, пектиновые вещества (С6Н10О7)n и белки. В состав первичной оболочки входит 5% целлюлозы, 30% гемицеллюлозы, 40% пектиновых веществ и 12% белков. Во вторичной оболочке 80-90% основного структурного вещества целлюлозы.
Целлюлоза - полимерный углевод. Ее молекула состоит из 1000 молекул глюкопиранозы (ангидрида глюкозы). Это химически инертное кристаллическое вещество. Не разрушается кислотами, щелочами и ферментами. Молекула целлюлозы не видна даже в электронный микроскоп. Соединяясь бок о бок до 100 молекул они образуют мицеллы - элементарные фибриллы. Их диаметр - около 100 А. Мицеллы уже фиксируются электронным микроскопом. Объединяясь в пучки, мицеллы образуют микрофибриллы. Это тяжи толщиной до 250А. В их составе около 2000 целлюлозных молекул. Микрофибриллы объединяются в продольные тяжи макрофибриллы, которые достигают ширины 0,4 мкм и содержат около 500000 молекул целлюлозы. Вторичная оболочка лубяного волокна содержит 2000000000 целлюлозных молекул (рис. 24, 25).
Гемицеллюлоза - гетерогенная группа полисахаридов. К ним относятся ксиланы, мананы, галактаны и глюканы. Она легче растворяется в щелочных растворах и легче гидролизуется разбавленными кислотами. При обработке листа бумаги концентрированной H2SO4 и затем промытой водой на ее поверхности образуется амилоид (гемицеллюлоза) – клейстероподобное вещество, образующее на поверхности водонепроницаемую пленку. На этом свойстве основан принцип получения пергаментной бумаги.
Пектиновые вещества. Близкородственны гемицеллюлозам, но имеют иную растворимость. Они встречаются в трех формах протопектин, пектин и пектовая кислота. Это полимер уроновых кислот, они аморфные коллоидные вещества, пластичные и в высшей степени гидрофильные.
Из пектиновых веществ состоит не только срединная пластинка, они наряду с целлюлозой входят в состав первичной оболочки.
Количество пектиновых веществ в клеточных оболочках паренхимных клеток (мякоть) яблока до 25%, свеклы до 30%, картофеля - 14%, в плодах цитрусовых - до 50%.
Пектины способны в высокой степени превращаться в желеобразную массу и поэтому они находят широкое применение в пищевой промышленности и медицине. Пектины яблок, свеклы, ревеня и др. являются диетическим продуктом, используются в качестве препаратов, вымывающих из организма токсические вещества.
Белки. В белке, обнаруженном в клеточной оболочке, до 22,5% оксипролина. Судя по наличию оксипролина, белок клеточных оболочек близок к скелетному белку животных - коллагену. Наблюдения за включением меченого углеродом пролина показали, что меченый пролин быстро включается в клеточные оболочки, трансформируясь в оксипролин.
Структура пекто-целлюлозной оболочки растительной клетки - фибриллярная. Между фибриллами целлюлозы расположена аморфная часть, состоящая из пектиновых веществ и гемицеллюлоз. Между ними располагаются структурные белки, определяющие стабильность фибрилл целлюлозы. В аморфном матриксе располагаются свободные пространства. Их в оболочке около 8%. Они являются обязательным элементом в структуре клеточных оболочек и особенно хорошо они развиты в клеточной оболочке корневых волосков. Стенки полости снабжены активными ферментами типа аскорбиноксидаз. Свободные пространства принимают участие в транспортировке воды из корня к тканям листа и другим органам (пассивный транспорт) (рис.26).
Образование клеточной оболочки связано с процессом цитокенеза (деления клетки) соматических клеток. В клетке в телофазу начинает формирование клеточная пластинка в центре клетки. Это полужидкий слой в виде капелек, пузырьков, отделяющихся от структур аппарата Гольджи. Клеточная пластинка окрашивается основными красителями (метиленовым синим), что свидетельствует о присутствии пектиновых веществ, играющих роль матрикса в процессе синтеза будущей первичной оболочки. Еще до полного соприкосновения клеточной пластинки с фрагмосомой, в клеточной пластинке различимы три слоя: срединная пластинка и две яркие узкие каемки- первичные оболочки. Производным аппарата Гольджи является и плазмалемма двух дочерних клеток.
Дальнейший рост оболочки идет в длину путем внедрения молекул целлюлозы и других составных элементов между уже существующими. Идет процесс растяжения, т.е. рост путем внедрения интуссусцепции. Он характерен для первичных оболочек. Рост оболочки в толщину осуществляется путем последовательного отложения целлюлозы и других компонентов и носит название аппозиции, т.е. роста наложением. Этот тип роста характерен для образования вторичных оболочек. Первичная оболочка характеризуется эластичностью, вторичная - упругостью.
Видоизменения клеточной оболочки (одревеснение, опробковение, кутинизация, ослизнение, минерализация). Одревеснение происходит за счет пропитывания клеточных оболочек лигнином (полифенол, С57Н60О10). Основным структурным элементом лигнина является оксигидроконифериловый спирт, предшественником которого бывают гемицеллюлозы или пектиновые вещества. Одревеснение начинается со срединной пластинки. При слабом одревеснении клетка сохраняет жизнедеятельность, сильное одревеснение сопровождается ее гибелью (трахеиды, сосуды). Одревеснение придает клеточной оболочке прочность.
Опробковение заключается в возникновении прослойки суберина между слоями вторичной оболочки или между срединной пластинкой и вторичной оболочкой. Опробковевшие клетки непроницаемы для воды и воздуха, они быстро отмирают и превращаются в защитный слой (пробковый слой на поверхности молодых древесных побегов) (рис. 27)
Кутинизация заключается в отложении на наружной поверхности клеточной оболочки жироподобного вещества кутина, образующего пленку, называемую кутикулой. Она выполняет защитную функцию от излишнего испарения воды. Покрывает поверхность эпидермы листа, стебля и плодов.
Ослизнение можно наблюдать на эпидерме семян льна, тыквы, арбуза, в листьях и корнях, корнеплодах, где происходит ослизнение клеточных оболочек паренхимных клеток. Возникает за счет превращения целлюлозы, крахмала и других углеводных компонентов в более высокомолекулярные углеводы - слизи, содержащие до 90% пентозанов. Они по физическим свойствам хорошо отличаются от крахмала полной растворимостью и от пектинов отсутствием желирующих свойств. Ослизнение способствует сохранению влаги и лучшему прорастанию семян, сохранению растений от действия резких скачков температур, от перегрева. Слизи обладают рядом целебных свойств - снижают кислотность желудочного сока и используются при катарах слизистых желудочно-кишечного тракта и раздражении верхних дыхательных путей. Полисахариды этой группы проявляют радиопротекторные свойства, усиливают иммунитет.
Минерализация наблюдается у многих растений, но особенно выражена у хвощей. При этом происходит отложение солей кальция (CaCО3) и других зольных элементов, а также за счет инкрустации SiО2 (y хвощей).
Дата добавления: 2015-08-04; просмотров: 3110;