Движение электрона в однородном электрическом поле
Электроды плоскопараллельны на расстоянии d один от другого (рис. 3.1).
Уравнение Лапласа, имеющее вид
, после интегрирования сводится к уравнению 
.

Рис. 3.1 – Движение электрона в однородном электрическом поле
Уравнение движения электрона в прямоугольной системе координат разбивается на три уравнения:

В рассматриваемом случае магнитное поле отсутствует, а электрическое имеет одну компоненту
. Тогда система уравнений запишется как

Пусть в момент
электрон находится в точке начала координат и движется со скоростью «
«, имеющей компоненты по осям х и y, а компонента скорости по z равна нулю. Тогда интегрирование приводит к уравнениям:

После повторного интегрирования первых двух уравнений получаем

Константы интегрирования в обоих случаях равны нулю, поскольку в начальный момент
интегрирование третьего уравнения дает
.
Исключим
:
.
Получим уравнение траектории электрона:

Видно, что движение происходит по параболе (кривая 1 на рис. 3.1), обращенной выпуклостью вверх. Анализ показывает, что вершина этой параболы имеет координаты
Совершая движение по этой траектории, электрон возвращается к оси х в точке с координатой:

Если вектор напряженности поля
направить в противоположную сторону
то изменяется знак первого члена уравнения траектории электрона:

т.е. в данном случае электрон будет двигаться по траектории 2 (на рис. 3.1). Это отрезок параболы, симметричный относительно начала координат параболе 1.
Дата добавления: 2015-08-01; просмотров: 1164;
