Дифракция от прямоугольной щели
Различают два вида дифракции: дифракцию в параллельных лучах (дифракция Фраунгофера) и сходящихся лучах (дифракция Френеля).
Рассмотрим дифракцию Фраунгофера на узкой прямоугольной щели. Пусть пучок параллельных лучей монохроматического света падает перпендикулярно на узкую прямоугольную щель шириной в непрозрачном экране Э1 (рис.6). За щелью расположена линза , которая собирает лучи на экране Э2, помещенном в ее фокальной плоскости (рис.7). Если бы при прохождении света через щель соблюдался закон прямолинейного распространения света, то на экране Э2 получилось бы изображение прямоугольной щели.
Рис.6 Рис.7
Вследствие дифракции картина коренным образом изменяется: на экране наблюдается система интерференционных максимумов – размытых изображений щели, разделенных темными промежутками интерференционных минимумов.
Согласно принципу Гюйгенса, каждый элемент поверхности световой волны АВ является источником когерентных волн, распространяющихся в различных направлениях. Из всех возможных направлений выберем одно – под углом относительно нормали к плоскости щели. Лучи, идущие из разных участков щели АВ под углом по отношению к их первоначальному направлению, соберутся линзой в точке М. Они пройдут разные пути и будут сдвинуты по фазе. Результат их интерференции в точке М зависит от угла и ширины щели.
Для объяснения полученной картины воспользуемся методом зон Френеля и выполним следующее построение. Через крайнюю точку А щели (см. рис.7) проведем плоскость АС, перпендикулярную направлению дифрагированных лучей. Тогда отрезок ВС будет представлять собой раз-ность хода крайних-лучей. Разделим его на ряд отрезков длиной . Число таких отрезков будет равно
(4)
Через концы этих отрезков проведем плоскости, параллельные плоскости АС, до пересечения с открытой частью волновой поверхности АВ. Фронт волны АВ разобьется на полосок одинаковой ширины, являющихся зонами Френеля. Колебания, приходящие в точку М от любой пары соседних зон, имеют разность хода и, находясь в противоположных фазах, ослабляют друг друга. Следовательно, ослабление света (дифракционный минимум) в точке М наблюдается при четном числе ( ), а усиление (дифракционный максимум) – при нечетном числе ( ). Таким образом, из формулы (4) получим условия минимумов и максимумов освещенности:
(5)
(6)
где
Дифракционная картина от одной щели представляет собой чередование светлых и темных полос около нейтрального максимума, которому соответствует условие . Число и называется порядком, дифракционного максимума: числу соответствует максимум нулевого порядка, числам и – максимумы первого и второго порядков соответственно. На рис.7 указаны положение и интенсивности дифракционных максимумов. Область, лежащую между и , занимает центральная светлая полоса. Чем меньше длина волны и больше ширина щели, тем уже эта полоса. Положение максимумов и минимумов на экране Э2 зависят от длины падающей световой волны, Если падающий свет сложный, например, состоит из двух монохроматических излучений с длинами волн и , то на экране максимумы и минимумы этих волн располагаются а разных местах. Большим соответствуют большие углы отклонения.
Дата добавления: 2015-08-01; просмотров: 1253;