Следствия основных теорем
Следствия основных теорем - формула полной вероятности (ФПВ) и формула Байеса находят широкое применение при решении большого числа задач.
Формула полной вероятности.
Если по результатам опыта можно сделать n исключающих друг друга предположений (гипотез) H1, H2, … Hn, представляющих полную группу несовместных событий (для которой P(i)=1), то вероятность события А, которое может появиться только с одной из этих гипотез, определяется:
(13) |
где P(Hi) – вероятность гипотезы Hi;
P(А| Hi) – условная вероятность события А при гипотезе Hi.
Поскольку событие А может появиться с одной из гипотез H1, H2, … Hn, то А= АH1 АH2 … АHn , но H1, H2, … Hn несовместны, поэтому
При зависимости события А от появления гипотезы Hi P(AHi) = P(Hi)· P(А| Hi), откуда и следует выражение (13).
Формула Байеса (формула вероятностей гипотез).
Если до опыта вероятности гипотез H1, H2, … Hn были равны P(H1), P(H2), …, P(Hn), а в результате опыта произошло событие А, то новые (условные) вероятности гипотез вычисляются:
(14) |
Доопытные (первоначальные) вероятности гипотез P(H1), P(H2), …, P(Hn) называются априорными, а послеопытные - P(H1| А), … P(Hn| А) – апостериорными.
Формула Байеса позволяет «пересмотреть» возможности гипотез с учетом полученного результата опыта.
Доказательство формулы Байеса следует из предшествующего материала. Поскольку P(Hi А) = P(Hi)· P(А| Hi) = P(Hi)· P(Hi| А):
(15) |
откуда, с учетом (13), получается выражение (15).
Если после опыта, давшего событие А, проводится еще один опыт, в результате которого может произойти или нет событие А1, то условная вероятность этого последнего события вычисляется по (13), в которую входят не прежние вероятности гипотез P(Hi), а новые - P(Hi| А):
(16) |
Выражение (16) называют формулой для вероятностей будущих событий.
Контрольные вопросы и задачи:
1. Перечислите показатели безотказности объекта и поясните, чем отличаются статистическая (выборочные оценки) и вероятностная форма (определения)?
2. Поясните «схему испытаний» объекта при определении выборочных оценок показателей безотказности?
3. Дайте определение «оценки» вероятности события и объясните условие сходимости оценки и вероятности события?
4. Перечислите и поясните основные аксиомы вероятности?
5. Перечислите и поясните смысл основных правил (теорем) теории вероятностей?
6. Назовите следствия основных теорем теории вероятностей?
7. Прибор может работать в двух режимах: «1» и «2». Режим «1» наблюдается в 80% случаев, режим «2» - в 20% случаев за время работы T. Вероятность того, что прибор откажет при работе в режиме «1» равна 0.1, а вероятность отказа прибора в режиме «2» - 0.7. Найти вероятность отказа прибора за время T? Ответ: 0.22
8. Прибор состоит из 3-х блоков, которые независимо друг от друга могут отказать. Отказ каждого из блоков приводит к отказу всего прибора. Вероятность того, что за время T работы прибора откажет первый блок, равна 0.2, второй – 0.1, третий – 0.3. Найти вероятность того, что за время T прибор проработает безотказно?
Ответ: 0.504
9. Прибор состоит из 2-х блоков, дублирующих друг друга. Вероятность того, что за время T каждый из блоков проработает безотказно, равна 0.9. Отказ прибора произойдет при отказе обоих блоков. Найти вероятность того, что за время T прибор проработает безотказно?
Ответ: 0.99
Дата добавления: 2015-07-30; просмотров: 798;