Система автоматической регулировки усиления
Системы автоматической регулировки усиления (АРУ) широко применяются в радиоприемных устройствах различного назначения, они предназначены для стабилизации уровня сигнала на выходе усилителей при большом динамическом диапазоне изменения входного сигнала, достигающим, например, в радиолокационных приемниках 60—100 дБ. При таком диапазоне изменения входного сигнала и отсутствии системы АРУ нарушается нормальная работа приемных устройств, что проявляется в перегрузке последующих каскадов приемника. В системах автоматического сопровождения цели РЛС перегрузка каскадов приемника приводит к искажению амплитудной модуляции, к снижению коэффициентов усиления, вплоть до срыва сопровождения. В системах стабилизации частоты большой динамический диапазон изменения сигнала вызывает изменение крутизны дискриминационной характеристики, что резко снижает качество работы системы.
Системы АРУ делятся на три основных типа [7]: 1) с обратной связью (с обратным действием); 2) без обратной связи (прямого действия); 3) комбинированные. Существуют одно- и многопетлевые системы АРУ с непрерывной и цифровой регулировкой.
Функциональная схема системы АРУ с обратной связью показана на рис. 1.13. Входное напряжение uвх(t) поступает на усилитель (У) с регулируемым коэффициентом усилении. Выходное напряжение этого усилителя детектируется, после чего суммируется с напряжением задержКи uз. Суммарное напряжение ис усиливается усилителем постоянного тока (УПТ) и подается на фильтр нижних частот (ФНЧ). Напряжение с ФНЧ uу используется для регулировки коэффициента усиления входного сигнала. Зависимость коэффициента усиления усилителя входного сигнала от управляющего напряжения называют регулировочной характеристикой. В общем случае эта характеристика нелинейная, однако приближенно она может быть заменена линейной зависимостью вида
k(uу)=k0 — auy, (1.22)
где k0 — коэффициент усиления при управляющем напряжении, равном нулю; а — крутизна регулировочной характеристики.
Изменение коэффициента усиления может быть достигнуто различными способами: путем включения управляемого аттенюатора, изменением крутизны характеристик электронных приборов и др. [7]. В качестве примера на рис. 1.14 показана схема усилителя с регулируемым коэффициентом усиления, в котором управляющее напряжение подается на базу транзистора VT. При увеличении управляющего напряжения напряжение на базе повышается, в результате чего коэффициент усиления каскада уменьшается.
Эффект стабилизации уровня выходного напряжения uвых(t) достигается за счет того, что с ростом уровни uвых(t) увеличивается и управляющее напряжение uу, под действием которого в соответствии с выражением (1.22) уменьшается коэффициент усиления усилителя входного сигнала, что приводит к снижению уровня выходного сигнала.
Для того чтобы не снижать усиление при слабых входных сигналах и начать управление коэффициентом усиления усилителя только при достижении входным сигналом определенного уровня в систему АРУ подают напряжение задержки ЕЕЕ3. В результате напряжение управления появится только в том случае, когда напряжение с амплитудного детектора превысит напряжение задержки.
ФНЧ в цепи обратной связи системы АРУ предназначен для передачи управляющего напряжения с частотами изменения уровня выходного напряжения АРУ. При этом ФНЧ не должен пропускать колебания управляющего напряжения с частотами спектра полезной модуляции сигнала uвх(t), в противном случае происходит демодуляция входного сигнала, ослабляющая выходной сигнал.
Непосредственно из схемы рис. 1.13 следует, что напряжение на выходе УПТ
если
, если (1.23)
где kд— коэффициент передачи детектора.
Управляющее напряжение на выходе ФНЧ находят из следующего дифференциального уравнения:
Tuу + uу=uф (1.24)
Напряжение на выходе системы АРУ
(1.25)
Уравнениям (1.23) — (1.25) соответствует структурная схема системы АРУ, изображенная на рис. 1.15. В этой схеме нелинейное звено описывается зависимостью
(1.26)
Отличительной особенностью системы АРУ по сравнению с системами РА, рассмотренными в предыдущих параграфах, является зависимость коэффициента передачи системы от времени, что происходит из-за наличия в системе (рис. 1.15) звена с коэффициентом передачи k(t). Кроме того, из-за нелинейного звена с характеристикой (1.26) система АРУ является нелинейной. Анализ нелинейных систем с переменными параметрами является сложной задачей
В установившемся режиме при постоянном уровне напряжения на входе системы АРУ из уравнений (1.23) — (1.26) следуют следующие соотношения:
(1.27)
где kупт — коэффициент усиления УПТ.
Уравнение (1.27) определяет регулировочную характеристику системы АРУ с обратной связью (кривая 2 на рис. 1.16). на этом же рисунке изображена характеристика без АРУ (кривая 1) и регулировочная характеристика с идеальной системой АРУ (кривая 3).
Дата добавления: 2015-07-30; просмотров: 1204;