Теплоизоляция резервуаров для хранения нефтепродуктов
Согласно технических условий эксплуатации многие типы резервуаров для хранения нефти, а в особенности мазута, требуют подогрева. Мазут, например, должен быть подогрет до температуры 80 оС. Подогрев осуществляется через днище с помощью перегретого пара. Для этих целей под днищем прокладывается система трубопроводов или электрических змеевиков. Существует способ подогрева с помощью электрических змеевиков, вмонтированных во внешнюю обшивку резервуара. В любом случае для сохранения некоторое время постоянной температуры хранимой жидкости наружная поверхность резервуара утепляется.
Процесс теплообмена осуществляется естественной конвекцией протекающей в ограниченном пространстве [10]. Согласно упрощенной схеме (см. рис. 9.11) одновременно происходят два процесса: нагревание у горизонтальной поверхности (днища) с поднятием кверху нагретых масс и охлаждение жидкости у стенки (и покрытия) с опусканием вниз охлаждающихся масс. По центральной вертикале резервуара может установиться температура t1, на внутренней поверхности стенок она окажется равной t2. Тогда перепад температур составит . Средняя температура жидкой среды определится как .
Однако к таких условиях установить правильную закономерность изменения коэффициента теплоотдачи отдельно для нагревания и охлаждения жидкости с учетом особенностей циркуляции практически невозможно. Поэтому в инженерных расчетах сложный процесс теплообмена принято рассматривать как элементарное явление передачи тепла путем теплопроводности, используя при этом понятие эквивалентного коэффициента теплопроводности .
tе
Н Ro
tw
δk 2 δ δk
Рис. 9.11 - Упрощенная схема теплообмена в резервуаре
Величина эквивалентного коэффициента теплопроводности устанавливается простой зависимостью вида
, (9.2)
где - коэффициент конвекции;
λ - коэффициент теплопроводности жидкости при данной температуре, Вт/(м·оС).
Так как циркуляция жидкости обусловлена разностью плотностей нагретых и холодных частиц и определяется критерием Gr·Pr, то и величина является функцией этого аргумента. Функция произведения этих критериев представляет собой критерий Нуссельта, т.е. Nu = F(Gr·Pr).
Критерий Грасгофа (Gr ) определяется зависимостью
, (9.3)
критерий Прандтля (Pr) имеет вид
, (9.4)
где β – коэффициент температурного расширения, (оС-1);
а - коэффициент температуропроводности, м2/с, ;
с - удельная теплоемкость жидкости, Дж/кг·оС;
ρ - плотность жидкости, кг/м3;
ν – кинематическая вязкость жидкости, м2/с;
g – ускорение силы тяжести, м/с2;
l - определяющий линейный размер (в данном случае – высота резервуара Н), м;
Δt – температурная разность, оС, между поверхностью и жидкостью на достаточном удалении от поверхности (можно принять температуру на вертикальной оси центра резервуара).
В приближенных расчетах по данным М.А. Михеева [10] для области значений аргумента Gr·Pr > 103 для определения величины используется зависимость вида
. (9.5)
Окончательный вид формулы (9.5) следующий:
. (9.6)
В этой формуле δ - радиус резервуара, м.
Удельное количество тепла, q, Вт/м2, передаваемого 1 м2 внутренней вертикальной поверхности представляется зависимостью вида
. (9.7)
Величина сопротивления теплопередаче внешней теплоизоляции, Ro, м2∙оС/Вт, может быть найдена из соотношения
. (9.8)
В формуле (9.8) te –температура наружного воздуха. Температура внутренней среды определяется техническим заданием, температура наружного воздуха равняется средней за год.
Приравняв правые части формул (9.7) и (9.8), получим , откуда
. (9.9)
Сопротивление теплопередаче теплоизолирующего слоя (для варианта одного слоя однородного утеплителя) может быть представлено как сумма его термического сопротивления ( ) и сопротивления теплоотдаче у наружной поверхности ( ), т.е.
Ro = + , (9.10)
где λk – коэффициент теплопроводности утеплителя, Вт/(м∙оС).
Из совместного решения уравнений (9.9) и (9.10) находится толщина утеплителя
. (9.11)
В формулах (9.10) и (9.11) величина коэффициента теплоотдачи (αe, Вт/(м2∙оС)) у наружной поверхности может быть принята согласно Приложения 9 [11].
Расчет по формуле (9.11) возможен, если заданы параметры внутренней среды (Δt, t2), а также точно указаны теплофизические характеристики нефтепродуктов.
Согласно СНиП 2.04.14–88 [11] расчет толщины теплоизоляционного слоя производится по нормативной плотности теплового потока, q, Вт/м2, проходящего через изолированную поверхность.
Толщина теплоизоляционного слоя dk, м, определяется по формуле
; , (9.12)
где lk - теплопроводность теплоизоляционного слоя, Вт/(м×°С);
Rk - термическое сопротивление теплоизоляционной конструкции, м2×°С/Вт;
Rtot - сопротивление теплопередаче теплоизоляционной конструкции, м2×°С/Вт;
ae - коэффициент теплоотдачи от наружной поверхности изоляции, принимаемый по справочному приложению 9 [11], во всех случаях равен 29 Вт/(м2×°С);
Rm - термическое сопротивление неметаллической стенки объекта, (если такая имеется в наличие), м2×°С/Вт.
Величина Rtot в зависимости от исходных условий определяется по формуле
, (9.13)
где tw – средняя температура вещества, °С;
te - температура окружающей среды, принимается средней за год [12], °С;
K1 - коэффициент, принимаемый по обязательному приложению 10 [11], для Украины K1 равен 1.
Дополнительное термическое сопротивление плоских и криволинейных неметаллических поверхностей оборудования определяется по формуле
, (9.14)
где dm и λm – соответственно толщина и коэффициент теплопроводности ограждения.
Дата добавления: 2015-07-24; просмотров: 1437;