Анализ устойчивости по ЛЧХ

 

Оценку устойчивости по критерию Найквиста удобнее производить по ЛЧХ разомкнутой САУ. Очевидно, что каждой точке АФЧХ будут соответствовать определенные точки ЛАЧХ и ЛФЧХ.

Пусть известны частотные характеристики двух разомкнутых САУ (1 и 2), отличающихся друг от друга только коэффициентом передачи K1 < K2. Пусть первая САУ устойчива в замкнутом состоянии, вторая нет.(рис.79).

 

 

Если W1(p) - передаточная функция первой САУ, то передаточная функция второй САУ W2(p) = K W1(p), где K = K2/K1. Вторую САУ можно представить последовательной цепочкой из двух звеньев с передаточными функциями K (безынерционное звено) и W1(p), поэтому результирующие ЛЧХ строятся как сумма ЛЧХ каждого из звеньев.

Поэтому ЛАЧХ второй САУ: L2( ) = 20lgK + L1( ),

а ЛФЧХ: 2( ) = 1( ).

Пересечениям АФЧХ вещественной оси соответствует значение фазы = - . Это соответствует точке пересечения ЛФЧХ = - линии координатной сетки. При этом, как видно на АФЧХ, амплитуды A1( ) < 1, A2( ) > 1, что соответствует на САЧХ значениям L1( ) = 20lgA1( ) < 0 и L2( ) > 0.

Сравнивая АФЧХ и ЛФЧХ можно заключить, что система в замкнутом состоянии будет устойчива, если значению ЛФЧХ = - будут соответствовать отрицательные значения ЛАЧХ и наоборот. Запасам устойчивости по модулю h1 и h2, определенным по АФЧХ соответствуют расстояния от оси абсцисс до ЛАЧХ в точках, где = - , но в логарифмическом масштабе.

Особыми точками являются точки пересечения АФЧХ с единичной окружностью. Частоты c1 и c2, при которых это происходит называют частотами среза.

В точках пересечения A( ) = 1 = > L( ) = 0 - ЛАЧХ пересекает горизонтальную ось. Если при частоте среза фаза АФЧХ c1 >- (рис.79а кривая 1), то замкнутая САУ устойчива. На рис.79б это выглядит так, что пересечению ЛАЧХ горизонтальной оси соответствует точка ЛФЧХ, расположенная выше линии = - . И наоборот для неустойчивой замкнутой САУ (рис.79а кривая 2) c2 < - , поэтому при = c2 ЛФЧХ проходит ниже линии = - . Угол 1 = c1-(- ) является запасом устойчивости по фазе. Этот угол соответствует расстоянию от линии = - до ЛФЧХ.

Исходя из сказанного, критерий устойчивости Наквиста по логарифмическим ЧХ, в случаях, когда АФЧХ только один раз пересекает отрезок вещественной оси [- ;-1], можно сформулировать так: для того, чтобы замкнутая САУ была устойчива необходимо и достаточно, чтобы частота, при которой ЛФЧХ пересекает линию = - , была больше частоты среза.

 

 

Если АФЧХ разомкнутой САУ имеет сложный вид (рис.80), то ЛФЧХ может несколько раз пересекать линию = - . В этом случае применение критерия Найквиста несколько усложняется. Однако во многих случаях данной формулировки критерия Найквиста оказывается достаточно.

 

Лекция 11. Качество САУ








Дата добавления: 2015-07-24; просмотров: 811;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.