Частотное распределение
Элементы сырых данных становятся постижимы, когда они сгруппированы в частотное распределение. Чтобы сгруппировать данные, мы должны сначала поделить шкалу, по которой они измерялись, на интервалы, и затем посчитать, сколько элементов приходится на каждый интервал. Интервал, в котором группируются величины, называется групповым интервалом. Решение о том, на сколько групповых интервалов надо разбить данные, не определяется каким-либо правилом, а исходит от решения исследователя.
В табл. П1 показана выборка сырых данных, отражающих показатели 15 учащихся на вступительных экзаменах в колледж. Показатели приведены в том порядке, в каком учащиеся сдавали экзамен (у первого учащегося показатель был 84, у второго — 61 и т. д.). В табл. П2 эти же данные представлены в виде частотного распределения, для которого групповой интервал был установлен равным 10. На интервал от 50 до 59 приходится один показатель, на интервал от 60 до 69 — два и т. д. Заметьте, что большинство показателей приходятся на интервал от 70 до 79 и что ни один показатель не ниже интервала 50-59 или выше интервала 90-99.
Таблица П1. Сырые показатели
84, 61, 72, 75, 77, 75, 75, 87, 79, 51, 91, 67, 79, 83, 69
(Показатели 15 учащихся на вступительных экзаменах в колледж, приведенные в том порядке, в каком учащиеся сдавали экзамен.)
Таблица П2. Частотное распределение
Групповые интервалы | Число лиц в группе |
50-59 | |
60-69 | |
70-79 | |
80-89 | |
90-99 |
Показатели из табл. П1, разбитые на групповые интервалы.
Частотное распределение легче понять, когда оно представлено графически. Наиболее широко применяемая графическая форма — это частотная гистограмма; ее пример показан в верхней части рис. П1. Гистограммы составляются путем рисования полос, основания которых задаются групповыми интервалами, а высота — соответствующими частотами групп. Еще один способ представления частотного распределения в графической форме — огибающая частоты, пример которой показан в нижней части рисунка П1. При построении огибающей частоты групп отмечаются напротив середины интервала групп, а затем эти точки соединяются прямыми линиями. Для завершения картины на каждом конце распределения добавляется еще один класс; поскольку у этих классов частота нулевая, оба конца получившейся фигуры окажутся на горизонтальной оси. Огибающая частоты дает ту же информацию, что и частотная гистограмма, но состоит из ряда соединенных отрезков, а не из полосок.
Рис. П1. Частотные графики.Здесь отображены данные из табл. П2. Вверху — частотная гистограмма, внизу — огибающая частоты.
На практике число элементов получается гораздо большим, чем то, что отражено на рис. П1, но на всех рисунках этого приложения показано минимальное количество данных, так чтобы вы могли легко проверить этапы размещения в таблице и на графике.
Дата добавления: 2015-07-22; просмотров: 1815;