ЭПЮРЫ ВНУТРЕННИХ УСИЛИЙ ПРИ КРУЧЕНИИ
Кручением называется простой вид сопротивления, при котором к брусу (валу) прикладываются внешние пары сил в плоскостях, совпадающих с поперечным сечением вала, а в последних возникает только внутренний крутящий момент.
Рассмотрим расчетную схему вала, нагруженного двумя сосредоточенными моментами М и 2М и распределенными по длине: m, рис.2.
Методика построения эпюры аналогична только что рассмотренной методике при растяжении-сжатии.
а) расчетная схема, б) первый участок, левая часть в) второй участок, левая часть г) третий участок, правая часть, д) эпюра внутренних крутящих моментов
Рис. 2. Построение эпюры внутренних крутящих моментов:
В исходных сечениях No 1,2 и 3 задаются положительными значениями внутренних крутящих моментов М1, М2, М3. Пусть М=ml.
Для первого участка (рис.2 б):
Для второго участка (рис.2 в):
Для третьего участка (рис.2 г):
Границы измерения параметра х3 в следующей системе координат:
Тогда:
Отмеченные значения ординат откладываются на эпюре внутренних крутящих моментов (рис.2 д).
Лекция № 4. Эпюры внутренних усилий при прямом изгибе.
Прямым изгибом называется такой вид простого сопротивления, когда внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки.
Как известно, при прямом изгибе в поперечном сечении возникают два вида внутренних усилий: поперечная сила и внутренний изгибающий момент.
Рассмотрим пример расчетной схемы консольной балки с сосредоточенной силой Р, рис. 1 а., …
а) расчетная схема, б) левая часть, в) правая часть, г) эпюра поперечных сил, д) эпюра изгибающих моментов
Рис.1. Построение эпюр поперечных сил и внутренних изгибающих моментов при прямом изгибе:
Прежде всего вычислим реакции в связи на базе уравнений равновесия:
После мысленного рассечения балки нормальным сечением 1—1 рассмотрим равновесие левой отсеченной части (рис.1 б), получим:
Таким образом, на первом участке поперечная сила отрицательная и постоянная, а внутренний изгибающий момент изменяется по линейному закону.
Для правой отсеченной части при рассмотрении ее равновесия результат аналогичен рис.1 в. А именно:
На основании полученных значений строятся эпюры поперечных сил (рис.1 г) и внутренних изгибающих моментов (рис.1 д).
Как следует из построенных эпюр , а в сечении жесткой связи. Именно это сечение и является наиболее опасным в данной расчетной схеме.
Продифференцируем выражение внутреннего изгибающего момента по координате х:
Как видим, после дифференцирования получено выражение для поперечной силы. Случайность это или закономерность? – Закономерность.
Дата добавления: 2015-07-18; просмотров: 1120;