Микробиологическое разложение нефти.
Это перспективное направление предотвращения загрязнения водоемов нефтепродуктами. Для некоторых бактерий нефть является питательной средой. Микробиологическая активность в большей степени зависит от температуры: скорость микробиологических процессов удваивается при увеличении температуры на 10 оС. На развитие микроорганизмов большое влияние оказывает содержание высоколетучих алифатических компонентов нефти. Введение в воду незначительных количеств нитратов и фосфатов увеличивает степень разрушения нефти на 70 %.
Число органических соединений, используемых микроорганизмами в качестве источников углерода очень велико. Можно считать, что для каждого углеводородного соединения, существующие микроорганизмы способны его разложить.
Рассмотренные методы удаления нефти с водных поверхностей показали, что наиболее эффективными средствами являются физико-химическая сорбция и микробиологическое разложение. Эти методы наиболее перспективны для борьбы с нефтяными загрязнениями окружающей среды и при строительстве скважин.
7.7 ОХРАНА ЗЕМЕЛЬНЫХ РЕСУРСОВ
Нефтяная промышленность является одним из ведущих потребителей земельного фонда, так как разведка, добыча, промысловая подготовка и транспортировка углеводородного сырья требуют размещения многочисленных нефтепромысловых объектов: скважин, кустовых насосных станций, нефтесборных пунктов, технологических установок, магистральных трубопроводов. На нефтяную промышленность приходится более 20 % земель, которые ежегодно выводятся из сельскохозяйственного оборота.
Интенсивная разведка и многолетняя эксплуатация нефтяных месторождений вызывает деформации земной коры, сопровождающиеся вертикальными и горизонтальными смещениями горных пород. Геодинамические процессы, протекающие в перекрывающих и продуктивных толщах, связаны с понижением пластового давления и, как следствие, изменением коллекторских свойств вмещающих пород.
Под влиянием проседания почвы происходит заболачивание и подтопление территории, наблюдается искривление стволов скважин, деформация обсадных колонн и разрушение объектов промыслового обустройства. Оседание земной поверхности наблюдается в основном при разработке месторождений, характеризующихся аномально высокими пластовыми давлениями (АВПД). При их эксплуатации пластовое давление резко снижается, что определяет деформацию поверхности на значительных площадях.
Оседание грунта отмечается и на территории отдельных районов нефтедобычи в бывшем СССР. На Апшеронском полуострове наблюдается опускание площадей нефтепромыслов с интенсивностью от 11.5 до 31.5 мм/год при максимальной величине 504.8 мм. По прогнозным данным, на некоторых участках месторождений в Западной Сибири ожидаются вертикальные смещения земной поверхности от 0.2 до 1.5 м.
При буровых работах проводится отвод земель площадью от 0.5 до 3.5 га на одну скважину в зависимости от целевого назначения, планируемой глубины проходки и типа буровой установки.
Практика показывает, что потери продуктивных земель в процессе разведки и освоения месторождений нефти неизбежны, а возврат их в хозяйственное использование зависит от местоположения района работ и технических возможностей производственной организации.
Для оценки эффективности восстановления земель используется коэффициент рекультивации, отражающий отношение рекультивируемых земель к общему количеству изъятых из оборота площадей. Для районов Украины, Прибалтики, Молдавии и Закавказья его величина достаточно высока и находится в пределах 0.6 – 0.9. Наиболее низкие значения этого коэффициента (0.2 – 0.3) отмечаются при разведке и эксплуатации нефтяных месторождений Сибири и севера Европейской территории России.
На осваиваемых нефтегазоносных площадях происходит механическое нарушение почвенно-растительного покрова, а также его загрязнение нефтью и нефтепродуктами. Интенсивность техногенного нарушения зависит от местоположения скважины и времени проведения буровых работ. Как правило, степень негативного воздействия от строительства и проходки скважин определяется схемой размещения технических и хозяйственно-бытовых сооружений, а также возможностью развития эрозионных процессов и масштабом использования гусеничной техники. Наблюдения показывают, что минимальные нарушения фиксируются на площадях, расположенных в замкнутых понижениях (котловинах), а максимальные — характерны для буровых, размещенных на берегах рек или вершинах холмов.
Для предотвращения и устранения последствий негативного воздействия техногенных факторов на почвенно-растительный покров применяются мероприятия, которые подразделяются применительно к поисково-разведочным работам и добыче нефти на промыслах (Рисунок 7.4)
Рисунок 7.4 — Комплекс мероприятий по защите земельных ресурсов при разведке и эксплуатации нефтяных месторождений
Такое разграничение довольно условно, так как бурение скважин, строительство транспортных коммуникаций и рекультивация земель характерны для всего цикла геолого-разведочных и эксплуатационных работ. Использование автомобильного и гусеничного транспорта, строительство промышленных объектов и магистральных трубопроводов приводит к нарушению физико-механических, химических и биологических свойств почв, грунтов и в целом рельефа осваиваемых площадей.
Важным направлением при охране земель является бурение скважин кустовым методом. При этом снижаются удельные капитальные вложения на каждую скважину, сокращается норма земельного отвода и уменьшается протяженность коммуникаций. Одновременно ограничивается циркуляция пластовых вод при их сборе в систему ППД, что благоприятно влияет на состояние окружающей среды.
В зависимости от интенсивности и продолжительности загрязнения почв и грунтов нефтепродуктами предусматривают техническую, химическую и биологическую рекультивацию. Первая из них включает работы по очистке территории, планировке нарушенных участков и механической обработке почвы (рыхление, дискование) для искусственной аэрации ее верхних горизонтов и ускоренного выветривания загрязнителя. Для восстановления продуктивности нефтепромысловых земель рекомендуется провести их глубокую вспашку и оставить для перегара (гелиотермическая мелиорация). Под влиянием гелиотермической обработки усиливаются процессы деградации нефтепродуктов, улучшается водовоздушный режим и повышается биохимическая активность почв.
С целью создания оптимальных условий для жизнедеятельности бактериальных микроорганизмов, способных ассимилировать углеводороды, кислые почвы подвергаются известкованию. Для восстановления качества дерново-подзолистых почв, которые в результате нефтяного загрязнения трансформировались в техногенные солончаки, применяется гипсование совместно с искусственным увлажнением.
Особенно интенсивное изменение почвенного и растительного покрова происходит в районах распространения многомерзлых пород. Техногенное воздействие вызывает не только линейное изменение экосистем, но и их широкое площадное нарушение.
Первое связано с движением транспорта и строительством нефте-, газопроводов, второе — с бурением и эксплуатацией месторождений. Влияние техногенных факторов на почвенно-растительный покров в криолитозоне проявляется как непосредственно при механическом нарушении, так и косвенно — через глубину и интенсивность протаивания почвы.
Загрязнение растительного покрова нефтью сказывается на его теплоизоляционныхсвойствах. Глубина промерзания по сравнению с контрольными площадками имеет тенденцию к сокращению, что объясняется нарушением радиационного баланса на загрязненных территориях.
Разведка и добыча нефти на Крайнем Севере сопровождается нарушением теплофизического равновесия в условиях многолетней мерзлоты и проявлением эрозионных процессов на поверхности земли. Наиболее значительные техногенные изменения отмечаются на участках распространения сильно льдистых много мерзлых пород и залежей подземных льдов.
Строительство скважин в районах многолетней мерзлоты приводит к развитию термокарста и просадкам, что вызывает разрушение природных ландшафтов. Известны случаи аварий из-за протаивания мерзлых пород в прискважинной зоне под действием тепла в процессе бурения. В результате разрушения многолетнемерзлых пород может начаться интенсивное фонтанирование нефти и газа через устье или по заколонному пространству. Возможно также образование приустьевых кратеров, размеры которых в поперечнике достигают 250 м.
Практика освоения северных районов бывшего СССР показала, что деформация и разрушение сооружений и природных комплексов вызваны недостаточностью геоэкологической информации при проектировании и строительстве хозяйственно-бытовых и производственных объектов. С целью сохранения сложившейся экологической обстановки или нанесения ей минимального ущерба при планировании производственных работ должно выполняться опережающееизучение гидрогеологических и инженерно-геологических условий территорий, перспективных для промышленного и хозяйственного освоения.
7.8 ОХРАНА АТМОСФЕРЫ
Около 90 % всех видов загрязнения атмосферы являются результатом разработки месторождений и утилизации энергетических ресурсов.
Из-за низкого коэффициента использования добываемого минерального сырья значительная его часть безвозвратно теряется и поступает в виде отходов в окружающую среду. По ориентировочным оценкам, около 70 % всех отходов находится в атмосфере, причем основные источники загрязнения воздушного бассейна расположены в северном полушарии.
Концентрация большинства веществ в воздухе лимитируется санитарными требованиями, которые в настоящее время являются одним из действенных средств охраны окружающей среды (Таблица 7.2)
Таблица 7.2
Наименование вещества | ПДК в воздухе рабочей зоны | ПДК в воздухе населенных пунктов | |
максимальная разовая | среднесуточная | ||
Сероводород | 10.0 | 0.008 | 0.008 |
Сероводород + углеводороды С1- С5 | 3.0 | — | — |
Диоксид серы | 10.0 | 0.5 | 0.05 |
Триоксид серы | 1.0 | 0.5 | 0.05 |
Диоксид углерода СО2 | 9000.0 | — | — |
Оксид углерода СО | 20.0 | 5.0 | 3.0 |
Диоксид азота NО2 | 2.0 | 0.085 | 0.04 |
Оксид азота NO | 30.0 | 0.6 | 0.06 |
Аммиак | 20.0 | 0.2 | 0.04 |
Хлор С12 | 1.0 | 0.1 | 0.03 |
Нефть и нефтепродукты | 10.0 | — | — |
Углероды алифатнческне предельные | 300.0 | — | — |
В пересчете на углерод | |||
Бензин топливный в пересчете на углерод | 100.0 | 0.05 | 0.05 |
Сероуглерод СS2 | 10.0 | 0.03 | 0.005 |
Сажа (копоть) | — | 0.15 | 0.05 |
В таблице перечислены основные загрязняющие вещества, оказывающие негативное воздействие на качественный состав атмосферы в процессе добычи и переработки нефти и газа. ПДК устанавливаются как для каждого вещества в отдельности, так и для совместного присутствия определенного сочетания вредных веществ в атмосферном воздухе. Для сероводорода ПДК в рабочей зоне равняется 10 г/м3, а при совместном действии этого соединения с легкими углеводородами С1 - С5 этот показатель уменьшается до 3 г/м3.
При совместном присутствии в воздухе нескольких веществ их общая относительная концентрация не должна превышать единицы:
,
где С1,С2, …. Сn — фактические концентрации вредных веществ;
ПДКi — соответствующие предельно допустимые концентрации этих веществ.
По степени экологической опасности вещества-загрязнители на объектах нефтяной промышленности можно расположить в следующей убывающей последовательности:
H2S ® CnH2n+2 ® SO2 ® SO3 ® NO ® NO2 ® CO ® NH3 ® CO2
Сероводород, углеводород и сернистый ангидрид являются наиболее характерными компонентами для нефтяных объектов и преобладают как по токсикологическому воздействию, так и по объемам поступления в атмосферный воздух.
Существенный вклад в загрязнение воздушного бассейна вносит нефтяной газ, который ежегодно сжигается в факелах в объеме десятков миллиардов кубических метров. Потери нефтяного газа только в нашей стране составляют более 8 % общих мировых потерь этого ценного углеводородного сырья. Утилизация ресурсов нефтяного газа, в целом не превышает 75 %, что эквивалентно потере 80 млн.т нефти. Несмотря на то, что максимальная степень использования ресурсов нефтяного газа в старых нефтегазодобывающих районах Поволжья и Северного Кавказа достигает 90 – 96 %, его отрицательное воздействие на биосферу в ряде случаев является доминирующим среди существующих источников загрязнения.
В новых нефтедобывающих районах существует диспропорция между темпами добычи углеводородного сырья и вводом в действие систем сбора и переработки попутного газа. Только в Западной Сибири ежегодно сжигается в факелах более 10 млрд.м3. газа. При этом в воздушный бассейн поступает 7 млн.т токсичных соединений.
Охрана воздушной среды в нефтяной промышленности проводится, главным образом, в направлении борьбы с потерями нефти за счет уменьшения испарения ее при сборе, транспортировке, подготовке и хранении. Для этого проектируются герметизированные системы сбора нефти и антикоррозионные наружные и внутренние покрытия трубопроводов и емкостей, устанавливаются непримерзающие клапаны, расширяется применение резервуаров с понтонами или плавающими крышами и другие технические решения. С целью уменьшения вредных выбросов в атмосферу сокращается сжигание нефтяного газа в факелах.
7.9 МОНИТОРИНГ НЕФТЯНОГО ЗАГРЯЗНЕНИЯ
Мониторинг — система долгосрочных наблюдений, оценки, контроля и прогноза состояния и изменения объектов.
Поисково-разведочные работы на нефть и газ, добыча и первичная переработка углеводородов на промыслах сопровождаются нарушением естественного состояния природной среды и ее загрязнением. Масштабы техногенных изменений в нефтегазоносных районах зависят от природных условий и особенностей геологического строения, техники и технологии геолого-разведочных. и эксплуатационных работ, продолжительности разработки месторождений.
Актуальной научно-практической задачей является разработка для основных объектов нефтяной и газовой промышленности единой научно обоснованной системы контроля, которая позволяла бы контролировать и выявлять выделение вредных веществ — загрязнителей атмосферного воздуха и других природных объектов, связь количественных показателей выбросов с технологией, метеорологическими параметрами. Полученные при этом данные должны служить научной основой для:
ü прогнозирования вероятности образования опасных концентраций вредных веществ в воздухе, воде и почве;
ü определения размеров загрязненных участков, опасных зон, возможных последствий.
Мониторинг нефтяного загрязнения — это отдельный раздел системы управления качеством окружающей среды, включающий сбор и накопление информации о фактических параметрах основных компонентов окружающей среды и составление прогноза изменения их качества во времени.
Концепция мониторинга предусматривает специальную систему наблюдений, контроля, оценки, краткосрочного прогноза и определения долгосрочных тенденций в состоянии биосферы под влиянием техногенных процессов, связанных с разведкой и разработкой нефтяных месторождений.
Дата добавления: 2015-07-14; просмотров: 2110;