Стратегии получения знаний
При формировании поля знаний ключевым вопросом является сам процесс получения знаний, когда происходит перенос компетентности экспертов на инженеров по знаниям. Для названия этого процесса в литературе по ЭС получило распространение несколько терминов: приобретение, добыча, извлечение, получение, выявление, формирование знаний. В англоязычной специальной литературе в основном используются два: acquisition (приобретение) и elicitation (выявление, извлечение, установление).
Термин "приобретение" трактуется либо очень широко — тогда он включает весь процесс передачи знаний от эксперта к базе знаний ЭС, либо уже как способ автоматизированного построения базы знаний посредством диалога эксперта и специальной программы (при этом структура поля знаний заранее закладывается в программу). Рассмотрим варианты этого "приобретения".
Извлечение знаний (knowledge elicitation) — это процедура взаимодействия эксперта с источником знаний, в результате которой становятся явными процесс рассуждений специалистов при принятии решения и структура их представлений о предметной области.
В настоящее время большинство разработчиков ЭС отмечает, что процесс извлечения знаний остается самым «узким» местом при построении промышленных ЭС. При этом им приходится практически самостоятельно разрабатывать методы извлечения, сталкиваясь со следующими трудностями:
• организационные неувязки;
• неудачный метод извлечения, не совпадающий со структурой знаний в данной области;
• неадекватная модель (язык) для представления знаний;
• неумение наладить контакт с экспертом;
• терминологический разнобой;
• отсутствие целостной системы знаний в результате извлечения только «фрагментов»;
• упрощение «картины мира» эксперта и др.
Процесс извлечения знаний — это длительная и трудоемкая процедура, в которой инженеру по знаниям, вооруженному специальными знаниями по когнитивной психологии, системному анализу, математической логике и пр., необходимо воссоздать модель предметной области, которой пользуются эксперты для принятия решения. Часто начинающие разработчики ЭС, желая упростить эту процедуру, пытаются подменить инженера по знаниям самим экспертом. По многим причинам это нежелательно.
Во-первых, большая часть знаний эксперта — это результат многочисленных наслоений, ступеней опыта. И часто, зная, что из А следует В, эксперт не отдает себе отчета, что цепочка его рассуждений была гораздо длиннее, например А —> D —> С ->В или А -> Q-> R -> В.
Во-вторых, как было известно еще Платону, мышление диалогично. И поэтому диалог инженера по знаниям и эксперта — наиболее естественная форма изучения лабиринтов памяти эксперта, в которых хранятся знания, частью носящие невербальный характер, то есть выраженные не в форме слов, а в форме наглядных образов, например.
В-третьих, эксперту труднее создать модель предметной области вследствие глубины и объема информации, которой он владеет. Еще в ситуационном управлении было выявлено: объекты реального мира связаны более чем 200 типами отношений (временные, пространственные, причинно-следственные, типа «часть—целое» и др.). Эти отношения и связи предметной области образуют сложную систему, из которой выделить «скелет» или главную структуру иногда доступнее аналитику, владеющему к тому же системной методологией.
Термин "приобретение" применяется при упоминании об автоматизированных системах прямого общения с экспертом. Они действительно непосредственно приобретают уже готовые фрагменты знаний в соответствии со структурами, заложенными разработчиками систем. Большинство этих инструментальных средств специально ориентировано на конкретные ЭС с жестко обозначенной предметной областью и моделью представления знаний, то есть не являются универсальными.
Приобретение знаний (knowledge acquisition) — процесс наполнения базы знаний экспертом с использованием специализированных программных средств.
Термин формирование знаний традиционно закрепился за чрезвычайно перспективной и активно развивающейся областью инженерии знаний, которая занимается разработкой моделей, методов и алгоритмов обучения. Она включает индуктивные модели формирования знаний и автоматического порождения гипотез. Эти модели позволяют выявить причинно-следственные эмпирические зависимости в базах данных с неполной информацией, содержащих структурированные числовые и символьные объекты (часто в условиях неполноты информации).
Формирование знаний (machine learning) — процесс анализа данных и выявление скрытых закономерностей с использованием специального математического аппарата и программных средств.
Традиционно к задачам формирования знаний или машинного обучения относятся задачи прогнозирования, идентификация (синтеза) функций, расшифровки языков, индуктивного вывода и синтеза с дополнительной информацией.
Наиболее продвинутыми среди методов машинного обучения являются, по-видимому, методы распознавания образов, в частности, алгебраический подход, в котором предусматривается обогащение исходных эвристических алгоритмов с помощью алгебраических операций и построение семейства алгоритмов, гарантирующего получение корректного алгоритма для решения изучаемого класса задач, то есть алгоритма, правильно классифицирующего конечную выборку по всем классам.
Однако применение методов формирования знаний пока не стало промышленной технологией разработки баз знаний. Для того чтобы эти методы стали элементами технологии интеллектуальных систем, необходимо решить ряд задач:
• обеспечить механизм сопряжения независимо созданных баз данных, имеющих различные схемы, с базами знаний интеллектуальных систем;
• установить соответствие между набором полей базы данных и множеством элементов декларативной компоненты базы знаний;
• выполнить преобразование результата работы алгоритма обучения в способ представления, поддерживаемый программными средствами интеллектуальной системы.
Помимо перечисленных существуют также и другие стратегии получения знаний, например, в случае обучения на примерах (case-based reasoning), когда источник знаний — это множество примеров предметной области. Обучение на основе примеров (прецедентов) включает настройку алгоритма распознавания на задачу посредством предъявления примеров, классификация которых известна.
Таким образом, можно выделить три основные стратегии проведения стадии получения знаний при разработке ЭС (рис. 3.6).
1. С использованием ЭВМ при наличии подходящего программного инструментария, иначе приобретение знаний.
2. С использованием программ обучения при наличии репрезентативной (то есть достаточно представительной) выборки примеров принятия решений в предметной области и соответствующих пакетов прикладных программ, иначе формирование знаний.
3. Без использования вычислительной техники путем непосредственного контакта инженера по знаниям и источника знаний (будь то эксперт, специальная литература или другие источники), иначе извлечение знаний.
Процессы извлечения и приобретения знаний являются наиболее эффективными и перспективными на современном этапе разработки ЭС.
Известно, что потери информации при разговорном общении велики (рис. 3.9).
Дата добавления: 2015-08-26; просмотров: 810;