Криоэлектронные приборы

 

 

Работа криоэлектронных приборов основана на явлении сверхпроводимости, когда скачкообразно уменьшается сопротивление ряда металлов и сплавов при охлаждении их до температур, близких к абсолютному нулю. Сверхпроводимость наступает, если охладить образец до температуры меньше критической. При этом сопротивление образца будет в 1012 раз меньше, чем при температуре больше критической (практически равно нулю). Известно около 30 элементов (например, индий, таллий, тантал, свинец, висмут, титан и др.) и большое число сплавов и соединений, которые могут служить сверхпроводниками.

Свойства сверхпроводников зависят не только от температуры, но и от электрического и магнитного полей, механических напряжений и наиболее сильно изменяются при воздействии внешнего магнитного поля. При приложении к сверхпроводнику определенного внешнего магнитного поля сверхпроводимость нарушается. Причем чем ближе температура охлаждения к критической, тем требуются меньшие напряженности поля для разрушения сверхпроводимости.

Элементарным прибором, использующим свойства сверхпроводимости, является криотрон, который состоит из отрезка проволоки-вентиля, изготовленного из сверхпроводника с низким значением критического магнитного поля (материал – тантал). Вентиль обмотан проволокой (материал – ниобий) из сверхпроводника с высоким значением критического магнитного поля. Если через обмотку криотрона пропустить требуемый ток, то на поверхности проводника – вентиля появляется магнитное поле, обусловленное этим током, которое превысит значение критического магнитного поля. В результате вентиль переходит в состояние, характеризующееся наличием определенного сопротивления. При уменьшении тока, управляющего переключением вентиля, последний вновь становится сверхпроводящим. Причем значение управляющего тока зависит от значения тока, проходящего через вентиль. Таким образом, криотрон является аналогом обычного электромагнитного реле. Рассмотренная конструкция криотрона проста, дешева, потребляет небольшую мощность, но требует применения устройства охлаждения большого объема.

Если применить пленочную конструкцию криотрона, можно одновременно микроминиатюризировать его и повысить быстродействие. Такая конструкция криотрона изображена на рис. 134.

На стеклянную подложку наносят вентильную пленку из олова, затем изоляцию из монооксида кремния и перпендикулярно (в плоскости подложки) к вентильной пленке – управляющую пленку из свинца.

Дальнейшего быстродействия криотрона можно достигнуть размещением между подложкой и вентильной пленкой свинцового экрана, который в сверхпроводящем состоянии уменьшает индуктивность криотрона.

На основе криотрона можно изготовить различные устройства (дешифраторы, сумматоры, запоминающие устройства, счетчики импульсов и др.). Базовым элементом логических схем является ячейка на двух криотронах. Для построения запоминающих устройств логические элементы на криотронах объединяют в матрицы.

При соединении двух сверхпроводящих слоев слабым контактом (слоем) из сверхпроводящего или несверхпроводящего материала при определенных условиях можно получить эффект Джозефсона.

В области контакта образуется туннельный переход Джозефсона, в котором осуществляется прохождение электронных пар через тонкий изолирующий барьер. Если на такой переход подать постоянный ток смещения по знамению, меньше порогового тока, то падение напряжения на переходе оказывается равным нулю, что соответствует отсутствию сопротивления. Пороговый ток является функцией напряженности магнитного поля, приложенного к переходу. Меняя напряженность магнитного поля, можно изменить пороговый ток и при постоянном питающем токе, получить падение напряжения на переходе, что соответствует наличию сопротивления. Таким образом, переход Джозефсона может находиться в двух различных состояниях (0 и 1), как и логические схемы.

На основе элементарной ячейки, использующей эффект Джозефсона, можно создать логические устройства необходимой сложности (запоминающие устройства, сдвиговые регистры). Устройства, основанные на эффекте Джозефсона, отличаются высоким быстродействием (10-11c), малой потребляемой мощностью и небольшими размерами (десятки микрон). Существуют определенные трудности, связанные с подбором сверхпроводящих материалов для приборов, работающих в широком диапазоне температур, технологической воспроизводимостью характеристик приборов и созданием малогабаритных охлаждающих систем.

Использование явления сверхпроводимости перспективно не только для создания элементов ЭВМ, но и для устройств очень высокой чувствительности и точности.

 

 

Тема 5.2 Хемотроны и другие функциональные устройства








Дата добавления: 2015-08-26; просмотров: 768;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.