Обогащение сырья

Всякое ископаемое сырьё после его добычи из земной коры, кроме полезной мине­ральной части, всегда содержит некоторое количество малоценных или бесценных, а ино­гда и вредных для данного производства примесей – пустой породы. Поэтому процесс по­лучения минерального сырья не ограничивается только выемкой его из месторождений. До поступления в производство сырьё подвергают такой обработке, чтобы его состав и свойства удовлетворяли требованиям данного технологического процесса. Такое измене­ние состава минерального сырья, заключающееся в увеличении концентрации в нём по­лезной части называют обогащением.

Обогащение полезных ископаемых, как правило, сложный и дорогостоящий процесс. Од­нако, не смотря на дополнительные затраты, связанные с обогащением, оно обеспечивает значительный эффект, определяемый:

1) возможностью расширения сырьевой базы за счёт комплексного использования сы­рья и вовлечения в эксплуатацию бедных по содержанию основного компонента минералов и руд.

2) более полное использование оборудования на химических предприятиях за счёт пере­работки высококонцентрированного сырья.

3) существенным улучшением качества готовой химической продукции.

4) значительной экономией транспортных средств, вследствие уменьшения перево­зок, приходящихся на долю пустой породы.

Обогащению могут подвергаться твёрдые материалы (например, горные породы) жидко­сти и растворы, а также газовые смеси.

В случае обогащения твёрдых материалов полученный продукт называют концен­тратом, а отходы – хвостами. В тех случаях, когда в сырье содержится несколько полез­ных составляющих, его делят на отдельные части (фракции), обогащенные тем или иным компонентом, т.е. из сложного сырья получают несколько концентратов, что позволяет более полно (комплексно) использовать сырьё.

Методы обогащения твёрдых материалов весьма разнообразны, они основаны на различии физических и химических свойств веществ, входящих в состав сырья, например, прочности, плотности, твёрдости, растворимости, магнитной проницаемости и т.д.

  1. Главная задача – комплексное использование сырья.

Извлекая из сырья основной продукт, сырьё обогащается по другим компонентам, кото­рые подчас являются более дорогими, чем основной продукт.

Например: производство цинка

 

ZnS →SO2 →H2SO4

↓ t°

ZnO (CuO, PbO, CdO, Au, Ag, РЗЭ, Pt)

↓ ↓ ↓

Zn Cu-Pb+Pt Cu-Cd+Pt

↓ ↓ ↓ ↓

Cu+Pt Pb+Pt Cd Cu+Pt → Cu

Au, Ag, Pt

  1. Уменьшение отходов производства

Отходы производства используются либо на самом производстве, либо используют на другие производства. Например, цементная промышленность использует шлаки (ме­таллы), сельскохозяйственная промышленность использует шлаки с фосфором. Ti, V и др. извлекают из металлургических шлаков. Из отходов производства сейчас выпускают ТНП.

  1. Использование «вторичного сырья»

Особенно это относится к металлургической и целлюлозно-бумажной промышленности. Используется металлолом, макулатура и т.д.

  1. Использование местного сырья

Это особенно приобретает значение при длинных перевозках, т.к. сокращение перевозок снижает себестоимость продукции.

  1. Замена пищевого сырья непищевым

Этиловый спирт не из картофеля, а гидролизный или из этилена. При синтезе синтетиче­ского каучука спирт как сырьевой продукт заменяют на бутан (из природного газа).

Основные методы обогащения твёрдых веществ:

1.Рассеивание (грохочение) основано на том, что минералы, входящие в состав сы­рья, имеют различную прочность, поэтому при дроблении менее прочные (хрупкие) мине­ралы дробятся на более мелкие зёрна, чем прочные (вязкие) материалы. Если после из­мельчения просеять такое сырьё через сито с отверстиями различного размера, то можно получить фракции, обогащённые тем или иным минералом.

2.Гравитационное разделение основано на различии скоростей осаждения частиц в жидкости или газе в зависимости от плотности или хрупкости этих частиц. Если осажде­ние производят в жидкости (чаще всего в воде), его называют мокрым гравитационным обогащением, если осаждение ведут в газе (чаще в воздухе), его называют сухим гравита­ционным обогащением.

3.Магнитная сепарация применяется для обогащения магнитновосприимчивых мате­риалов от немагнитных, а также для удаления стальных предметов, случайно попавших в руду; так отделяют магнитный железняк от пустой породы.

4.Флотационное обогащение основано на различной смачиваемости зёрен отдельных минералов водой. Частицы несмачиваемого (гидрофобного) материала не преодолевают силы поверхностного натяжения воды и остаются на её поверхности. Частицы смачивае­мого (гидрофильного) материала обволакиваются плёнкой жидкости и опускаются на дно аппарата. Несмачиваемый материал снимают с поверхности жидкости, отделяя от руды.

Жидкие растворы различных веществ концентрируют упариванием растворителя, вымораживанием, выделением примесей в осадок или в газовую фазу.

Газовые смеси разделяют на компоненты последовательной конденсацией, т.е. пе­реводят их в жидкое состояние при постепенном понижении температуры и сжатии. Этот метод основан на различии температур конденсации компонентов газовой смеси. В других случаях газовую смесь сначала превращают в жидкость, а затем последовательным испа­рением её разделяют на индивидуальные компоненты. Разделение газовых смесей осуще­ствляется также поглощением отдельных газов жидкостями (абсорбция) или твёрдыми веществами (адсорбция) с последующим выделением их из сорбентов в поглощенном виде.

 

А теперь перейдём к более подробному ознакомлению с теоретическими основами и технологиями процессов обогащения.

Как уже выяснили, первой стадией любого процесса обогащения твёрдых тел явля­ется стадия измельчения. В зависимости от размеров кусков исходного и измельчённого материала различают следующие классы измельчения:

 

Класс измельчения Размер кусков исходного материала, dн, мм Размер кусков измельчён­ного материала, dк, мм
Дробление a) крупное b) среднее c) мелкое Помол a) грубый b) средний c) тонкий d) коллоидный     1-5 0,1-0,05 0,1-0,04 <0,1   1-5   0,1-0,5 0,015-0,005 0,005-0,001 <0,001

 

По твёрдости измельчения материалы делят на твёрдые (твёрдость по Моосу 5-10) – это руды, породы, шлак; средней твёрдости (твёрдость 2-5) – известняк, каменная соль, уголь; мягкие (твёрдость <1) – глина, пластмассы, зерно.

Отношение диаметров кусков исходного и измельчённого материала dн/dк =i назы­вают линейной степенью измельчения, а отношение dн3/dк3 =i0 – объёмной степенью из­мельчения. Под dн и dк подразумевают размеры наибольших кусков. При измельчении крупных и средних кусков обычно i = 3-8, а для мелких i = 10-50 и более. При этом, чем прочнее измельчённый материал, тем меньше величина i.

Одним из важнейших технико-экономических показателей процессов измельчения твёрдых материалов является расход энергии для совершения работы измельчения. Если предположить, что измельчение тело является однородным, абсолютно упругим и делится по строго определённому геометрическому закону, то расход энергии должен быть про­порционален величине вновь образованной поверхности в измельчённом материале (по­верхностная гипотеза Риттингера 1867 г.)

Так, например, тело кубической формы с длиной ребра dн имеет поверхность Fн=6dн3. Разрежем этот куб на z маленьких кубиков с длиной ребра dк. Число этих кубиков будет равно dн3/dк3 , а их суммарная поверхность Fx=6 (d /d )=6dк2i0. Вновь образованная поверхность выражается формулой F=Fx–Fн=6d (i–1).

Принимая, что на образование единицы поверхности затрачивается работа Ау, получим выражение для работы на измельчение рассматриваемого тела

А=6Ауd (i–1)

Величина Ау теоретическому определению не поддается и находится опытным путем в каждом конкретном случае применительно к данному материалу, данной машине и данной степени измельчения. Она одновременно и отражает отклонение от всех ранее сделанных предположений. Величина А всегда больше теоретической т.к. энергия дополнительно тратится на деформацию тела. Теория также не учитывает различную форму кусков материала и применима лишь в случаях измельчения резаньем и истиранием и для мелкого дробления.

При измельчении материала методами раздавливания, удара и для хрупкого и среднего дробления практически оправдывается гипотеза Кирпичева-Кика (1874), базирующаяся на теории упругости, согласно которой расход энергии пропорционален разрушающему напряжению, и энергия расходуется на деформацию материала до его разрушения.

Вывод: под действием силы Р кусок материала деформируется до разрушения

σр – разность напряжения

l – начальный размер

Δl – деформация

Работа A = PΔl если P= относительное сжатие (по закону Гука)

E – модуль упругости

тогда

A=

Разнообразие физико-химических свойств твердых материалов привело к созданию ряда измельчающих машин, отличающихся принципом действия.

Принципы измельчения твердых материалов следующие:

– раздавливание,

– раскалывание,

– истирание,

– удар.

Обобщенная теория:

A = 6A’dн2(i–1) + σ

мелкое крупное

В зависимости от свойств материала применяют тот или иной метод, или сразу несколько методов.

Например:

Материал Метод
Твердый, хрупкий Твердый, вязкий Хрупкий, средней твердости Вязкий, средней твердости Раздавливание, удар Раздавливание Удар, истирание Истирание

 

Для крупного и среднего дробления применяются:

  1. Щековые дробилки (раздавливание)
  2. Конусные дробилки (раздавливание + истирание)

Для мелкого измельчения и тонкого помола применяются:

  1. Молотковые мельницы (удар + истирание)
  2. Шаровые (барабанные) мельницы (удар + истирание)

 








Дата добавления: 2015-06-17; просмотров: 875;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.02 сек.