Группировка неизвестных

Если при расчете симметричной рамы (рис. 8.3 а) выбрана обычная основная система (рис. 8.3 б), то все коэффициенты канонических уравнений

X1+ X2 +D1P=0,

X1+ X2 +D2P=0

будут отличаться от нуля.

Рис. 8.3

Если же неизвестные группировать по формулам

X1=Y1 +Y2 ,

X2=Y1 – Y2 ,

что соответствует основной системе на рис. 8.3 д, то единичные эпюры (рис. 8.3 е, ж) будут ортогональными ( Ä =0), и канонические уравнения распадутся на два независимых уравнения:

Y1 +D1P=0,

Y2 +D2P=0.

Как видим, при группировке неизвестных отдельные коэффициенты обращаются в нуль и нет необходимости их вычисления. С другой стороны, распадение системы канонических уравнений на две независимые системы уравнений упрощает их решение. Поэтому группировка неизвестных позволяет существенно уменьшить объем вычислений.








Дата добавления: 2015-06-17; просмотров: 832;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.