Аннуитет. Одним из ключевых понятий в финансовых расчетах является понятие аннуитета

Одним из ключевых понятий в финансовых расчетах является понятие аннуитета. Логика, заложенная в схему аннуитетных платежей, широко используется при оценке долговых и долевых ценных бумаг, а также в анализе инвестиционных проектов.

Аннуитет представляет собой частный случай денежного потока. Известны два подхода к его определению. Согласно первому подходу аннуитет представляет собой однонаправленный денежный поток, элементы которого имеют место через равные временные интервалы. Второй подход накладывает дополнительное ограничение, а именно: элементы денежного потока одинаковы по величине. В дальнейшем изложении материала мы будем придерживаться именно второго подхода. Если число равных временных интервалов ограничено, аннуитет называется срочным. В этом случае:

С1 = Сз = ... = Сп = А.

Для оценки будущей и приведенной стоимости аннуитета можно пользоваться вышеприведенными формулами, вместе с тем благодаря специфике аннуитетов в отношении равенства денежных поступлений они могут быть существенно упрощены.

Формула для расчета текущей стоимости аннуитета имеет вид

PVA = A/(1+i)+A/(1+i)2 +A/(1+i)3+…+A/(1+i)n.

Введем следующие обозначения

B=A/(1+i),

C=1/(1+i).

В результате получим

PVA=B*(1+C+C2+C3+… +Cn-1) *

Умножая левую и правую части уравнения на величину C

PVA*С = B*(C+C2+C3+… +Cn) **

Вычитая уравнение ** из * получим

PVA*(1-С) = B*(1-Cn).

Или

PVA*[1-1/(1+i)] = A/(1+i)*[1-1/(1+i)n)].

Умножение обеих частей уравнения на величину (1+i) дает

PVA*i = A*[1-1/(1+i)n)]

Или

PVA = A*[1/i-1/(i*(1+i)n)].

Аналогичным образом может быть получено выражение для расчета будущей стоимости аннуитета.

FVA = A+A*(1+i)2 + A*(1+i)3+…+A*(1+i)n-1.

Введем обозначения B=A*(1+i)/ и получим

FVA = A*(1+B +B2 B3+…+Bn-1).

Умножим обе части уравнения на величину B.

FVA*B = A*(B +B2 B3+…+Bn).

Вычитая данное уравнение из предыдущего получим,

FVA*(1-B) = A*(1-Bn).

Или

FVA = A/i*[(1+i)n-1].

По аналогии с функциями FM1(i,n)= (1+i)n и FM2(i,n)=1/(1+i)n функции FM3(i,n)= 1/i*[(1+i)n-1] FM4(i,n)=[1/i-1/(i*(1+i)n)] и табулированы для различных значений i и п. Экономический смысл FМЗ(i,п), называемого мультиплицирующим множителем для аннуитета, заключается в следующем: он показывает, чему будет равна суммарная величина срочного аннуитета в одну денежную единицу (например, один рубль) к концу срока его действия. Множитель FМ4(i,п) показывает текущую стоимость аннуитета в одну денежную единицу при заданных значениях i и n.

При выполнении некоторых инвестиционных расчетов используется техника оценки бессрочного аннуитета. Аннуитет называется бессрочным, если денежные поступления продолжаются достаточно длительное время (в западной практике к бессрочным относятся аннуитеты, рассчитанные на 50 и более лет).

В этом случае прямая задача смысла не имеет. Что касается обратной задачи, то ее решение может быть получено на основе формулы

PVA = A*[1/i-1/(i*(1+i)n)]

при n стремящейся к бесконечности получаем:

PVA = A/i.

 








Дата добавления: 2015-06-17; просмотров: 1042;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.