Обработка холодом
Если температура конца мартенситного превращения ниже 0оС, то после закалки в структуре стали содержится остаточный аустенит. Наличие остаточного аустенита снижает твердость стали, а его последующий распад приводит к изменению форм и размеров. Чем ниже температура конца мартенситного превращения, тем больше остаточного аустенита в структуре закаленной стали.
С целью уменьшения количества остаточного аустенита сталь после закалки охлаждают до отрицательных температур. Такой технологический процесс называется обработкой холодом, в результате чего возобновляется мартенситное превращение. Температурный режим обработки холодом определяется температурой конца мартенситного превращения. Поскольку превращение происходит только при охлаждении в области мартенситного превращения. Более глубокое охлаждение нецелесообразно, поскольку не вызовет дополнительного превращения.
После закалки стали выдержка при комнатной температуре приводит к стабилизации аустенита и при последующей обработке холодом не весь остаточный аустенит будет превращаться в мартенсит. Поэтому обработку холодом рекомендуется проводить немедленно после закалки.
Обработка холодом целесообразна для углеродистых сталей с содержанием углерода свыше 0,6% и применяется для стабилизации размеров калибров, колец шарикоподшипников и других особо точных изделий, для получения максимальной твердости инструмента и цементованных деталей, а также для повышения магнитных характеристик стальных магнитов.
Отпуск
Отпуском называется термическая операция, включающая нагрев до температуры ниже АС1, выдержку при заданной температуре и последующее охлаждение с заданной скоростью и обеспечивающая более равновесное состояние металла.
При отпуске происходит уменьшение внутренних напряжений и тем более значительное, чем выше температура отпуска. Повышение скорости охлаждения с температуры отпуска приводит к увеличению остаточных напряжений. Например, при охлаждении в воде после отпуска (применяется для устранения отпускной хрупкости) уровень возникающих напряжений может быть на порядок выше по сравнению с охлаждением той же детали на воздухе.
С повышением температуры отпуска твердость и прочность понижаются, а пластичность и ударная вязкость повышаются.
Зависимость твердости от температуры отпуска качественно имеет такой вид. С повышением температуры отпуска она снижается в результате увеличения карбидных частиц и обеднения углеродом a-твердого раствора. В высокоуглеродистых сталях при отпуске до 100°С имеет место повышение твердости на 1-2HRC в результате превращения тетрагонального мартенсита в отпущенный, а при отпуске при 200-250°С возможно некоторое повышение твердости в результате превращения остаточного аустенита в более твердый отпущенный мартенсит.
Нагрев до 300оС приводит к повышению пределов прочности и упругости, а при дальнейшем повышении температуры отпуска происходит их снижение.
Пластические свойства увеличиваются с повышением температуры отпуска и наибольшая пластичность соответствуют отпуску при 600...650оС. Отпуск при более высоких температурах уже не повышает пластичность.
Ударная вязкость у закаленной углеродистой стали сохраняется низкой вплоть до температуры отпуска » 400оС, после чего начинается её интенсивное повышение до достижения максимума при 600оС.
Различают три вида отпуска: низкотемпературный, среднетемпературный и высокотемпературный.
Низкотемпературный отпуск осуществляется в интервале температур 80…200оС. В результате его проведения мартенсит закалки превращается в мартенсит отпуска, имеющий повышенную ударную вязкость и пластичность по сравнению с мартенситом закалки при практически той же твердости. Поэтому низкотемпературному отпуску подвергают режущий и измерительный инструменты из углеродистых и низколегированных сталей, а также детали после поверхностной закалки и цементации.
Среднетемпературный отпуск проводят при температурах 350…500оС, в результате чего образуется дисперсная феррито-цементитная смесь с зернистой формой цементитных частиц, называемая трооститом отпуска. Троостит обладает повышенными значениями предела текучести и твердостью до 450…500 НВ. Среднетемпературному отпуску подвергаются рессоры и пружины.
Высокотемпературный отпуск производится при температурах 500…650оС. Образующаяся структура, представляющая собой ферритную основу с коагулированными и сфероидизированными частицами цементита, называется сорбитом отпуска. Сорбит отпуска обладает высоким комплексом прочностных и пластических свойств, ударной вязкости и низкой переходной температурой хладноломкости.
Термическая обработка, состоящая из закалки и высокотемпературного отпуска, называется улучшением.
При проведении отпуска возможно проявление отпускной хрупкости, проявляющееся в снижении ударной вязкости. Различают два рода отпускной хрупкости (рис. 16).
1 – быстрое охлаждение; 2 – медленное охлаждение
Рисунок 16 – Изменение ударной вязкости стали в зависимости от температуры отпуска и последующей скорости
охлаждения
Отпускная хрупкость первого рода проявляется при отпуске около 300оС у всех сталей, независимо от их состава и скорости охлаждения после отпуска.
Отпускная хрупкость второго рода обнаруживается после отпуска выше 500оС и проявляется только при медленном охлаждении с температуры отпуска. Склонность к отпускной хрупкости второго рода проявляется у сталей, легированных марганцем, хромом, никелем при наличии в ней более 0,001% фосфора.
Для сталей, склонных к отпускной хрупкости второго рода, следует предусматривать быстрое охлаждение после отпуска или применять стали, легированные молибденом, замедляющим её развитие. Но более эффективным является применение чистых сталей по фосфору, а также по примесям внедрения (кислороду, азоту, водороду) и цветным металлам.
Дата добавления: 2015-04-07; просмотров: 2398;