Биологическая фиксация молекулярного азота

Важное место в биосинтезе азотсодержащих органических соединений занимают процессы, приводящие к включению к их состав азота. Первичным источником органических соединений служит атмосферный азот, составляющий по объему 78% атмосферы. Метаболизм азота в биосфере начинается с восстановления его до аммиака ,т.е. с биологической фиксации азота.

Способностью к восстановлению атмосферного азота обладают азотфиксирующие бактерии. К числу таких организмов относятся некоторые виды гетеротрофных бактерий как аэробных рода Azotobacter, так и анаэробных рода Clostridium, фотосинтезирующие бактерии рода Rhodospirillium, некоторые водоросли и, наконец, симбиотические системы, состоящие из бактерий рода Rhizobium и некоторых растений, в основном представителей семейства бобовых. В последнем случае ни бактерии, обитающие в корневых клубеньках растения, ни само растение не обладают способностью фиксировать азот, и только их симбиоз приводит к возникновению весьма эффективной и важной «кооперативной» системы фиксации азота.

Первый этап – фиксация атмосферного азота азотфиксирующими организмами является первым этапом цикла азота в природе.

Второй этап – нитрификация аммиака, осуществляемая почвенными микроорганизмами, которые способны использовать NH3 в качестве источника энергии, окисляя его до NO2- до NO3-. Важную роль как форма хранения азота в почве играет NO3-.

Третий этап – восстановлении нитратов растениями и многими микроорганизмами вновь до аммиака при помощи фермента нитроредуктазы.

Четвертый этап – использование аммиака растениями, животными для синтеза аминокислот и построения своих белков.

Аминокислоты, выделяющиеся при распаде белков, возвращаются в почву, а нитрофицирующие бактерии вновь превращают их в NO2- и NO3-. Другие виды микроорганизмов осуществляют процесс денитрификации, превращая NO2- в молекулярный азот, который возвращается в атмосферу.

Молекулярные механизмы фиксации азота

Энергия связи N≡N составляет 940 кДж/моль, т.е. она весьма устойчива к химическим воздействиям, недаром азот в переводе означает безжизненный. Ферментативная система, катализирующая реакцию фиксации N2, называется нитрогеназой:

Н

׀

:N≡N: + 6ē + 6H+ → :N– Н

׀

Н

Таким образом, для фиксации N2 необходимы сильные восстановители (поток электронов), а также АТФ и Mg2+. Природа доноров электронов различная у разных микроорганизмов. У аэробных бактерий (Azotobacter, Rhizobium) необходимые для фиксации N2 восстановители и АТФ образуются в ходе углеводного обмена в реакциях с участием НАДФ. Фотосинтетические бактерии и сине-зеленые водоросли способны к фотохимическому образованию сильных восстановителей.

Нитрогеназный комплекс состоит из белковых компонентов двух типов.

1. Молибдоферредоксин (Mo-Fe-протеин), или собственно нитрогеназа, содержащая четыре идентичные субъединицы, в каждую из которых входит два атома молибдена, негеминовое железо, лабильный сульфид; молекулярная масса тетрамера ~200 кДа;

2. Редуктазный компонент (Fe-белок), или азоферредоксин, имеет молекулярную массу от 50 до 70 кДа, димер также содержит негеминовое железо и лабильный дисульфид.

Таким образом, оба компонента представляют собой железопротеины (Fe-S-белки), в которых железо связано с атомом серы остатка цистеина и неорганическим сульфидом.

Суммарное уравнение фиксации азота имеет следующий вид:

N2 + 3 НАДФН+Н+ + 12 АФТ + 12 Н2О → 2 NH3 + 3 НАДФ+ + 12 АДФ + 12 Н3РО4

Как было отмечено выше, для превращения N2→NH4+ под действием нитрогеназного комплекса необходимы мощные восстановители (первичный донор электронов НАДФН+Н+) и АТФ. У большинства азотфиксирующих организмов непосредственно источником электронов с высоким потенциалом для этой шестиэлектронной реакции служит ферредоксин (железопротеин типа Fe4-S4, молекулярная масса ~10 кДа), который восстанавливается НАДФН и переносит свои электроны на азоферредоксин (редуктазный компонент). Реакция катализируется флаводоксином (ФМН-содержащий фермент).

Ниже приведена возможная последовательность реакций фиксации молекулярного азота.

1. Восстановленный ферредоксин передает электроны редуктазному комплексу (компонент 2). Катализатором этой реакции является флаводоксин.

2. АТФ связывается с редуктазой, происходит изменение ее конформации, приводящее к увеличению восстановительной способности (окислительно-восстановительный потенциал снижается с -0,29 до 0,40 В), что делает редуктазу способной перенести электроны на нитрогеназный комплекс.

3. Происходит перенос электронов на компонент I, происходит гидролиз АТФ до АДФ и Н3РО4, и редуктаза отделяется от нитрогеназного компонента. Наконец, N2 связывается с нитрогеназным компонентом и восстанавливается до NH4+. Энергия, необходимая для этого процесса, обеспечивается гидролизом АТФ (рис. 11.5).

Рис. 11.5. Нитрогеназа

Следует отметить важную функцию молибдена в процессе азотфиксации. Он способствует формированию функционально активной конформации нитрогеназы, участвует в передаче электронов и связывании азота. Известно также ,что молибден индуцирует синтез этого комплекса.

Ведутся поиски биологических методов, с помощью которых можно было бы сделать азот атмосферы более доступным для практических нужд. Большую часть биологически значимого азота дают клубеньковые бактерии – ризобии в симбиозе с бобовыми растениями. Методами генной инженерии можно интенсифицировать азотфиксацию этих бактерий с целью создания более эффективных симбиотических азотфиксаторов.








Дата добавления: 2015-06-12; просмотров: 6097;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.