Процесс отсадки. Отсадочные машины.

Среди гравитационных процессов обогащение большое распространение получило распространение обогащение на отсадочных машинах.

Процесс отсадки - это процесс гравитационного обогащения, основанный на разнице скоростей падения минеральных частиц в пульсирующей вертикальной струе воды. Материал, подлежащей разделению, подается на решето отсадочной машины, через отверстие которого поступает пульсирующая в вертикальном направлении восходящая и нисходящая струя воды. В результате периодического действия струе происходит разделение обогащаемого материала, т.е. зерна, имеющие большую плотность, концентрируются в нижнем слое материала, лежащего на решете и представляют собою концентрат, а зерна меньшей плотности концентрируются в верхнем слое и являются хвостами.

На отсадочных машинах обогащается материал крупностью от 50 до 0,25 мм. Для повышения эффективности исходный материал перед отсадкой обычно классифицируют по крупности и каждый класс обогащается самостоятельно. Предварительная классификация крупного материала производится в соответствии с коэффициентом равнопадаемости в условиях стесненного падения. Мелкий материал обычно не классифицируется по крупности перед отсадкой. Узкая шкала классификации по наименьшему коэффициенту равнопадаемости дает лучшие результаты при обогащении, однако это требует установки большого количества грохотов и отсадочных машин.

Под действием пульсирующей струи воды расслаивание по высоте смеси минералов различной плотности ( кварца и касситерита) осуществляется в соответствии с диаграммой Г.О.Чечотта ( см. рис. 74). По действием восходящего потока воды минеральная смесь разрыхляется и частицы легкого минерала ( кварца), скорость падения которых меньше скорости восходящего потока, поднимаются в верхние слои материала Частицы тяжелого минерала ( касситерита) находятся при этом во взвешенном состоянии, а затем и при нисходящем потоке занимают нижний слой.

В камере машины над решетом минеральные частицы с водой образуют рыхлую смесь – естественную постель, которая также создает условия стесненного падения и способствует расслаиванию частиц по плотности. Мелкие зерна тяжелого минерала легко проходят по промежуткам, образующиеся в рыхлой постели между крупными частицами и образуют нижний слой или проходят через отверстия в решете. Разрыхленный слой материала, таким образом, позволяет тяжелым частицам пройти в нижний слой, а уплотненный слой, образующийся при нисходящем потоке воды, препятствует прохождении. В нижний слой легких частиц. Попеременное действие восходящей и нисходящей струи воды создает условия для постепенного расслаивания материала не только по плотности, но и по крупности.

В восходящей струе воды плотность среды изменяется в вертикальном направлении, т.е. при начальном ускорении частиц плотность среды будет наименьшей. Величина начального ускорения частиц зависит от плотности минералов и имеет особенно важное значение при расслаивании неклассифицированного материала. Неклассифицированные по крупности минеральные частицы, имеющие различную плотность, при повторяющихся пульсациях воды даже за очень короткий период при падении пройдут путь различной длины, т.к. начальное ускорение для каждой частицы будет различным. Так для галенита оно составит

,

в то время как для кварца

Следовательно, для галенита начальное ускорение в 1,4 раза больше, чем для кварца. Это значит, что скорость падения равнопадающих частиц галенита и кварца в течение начальных 1-2 с будет различной.

Поэтому, если в отсадочной машине создать короткие, но часто повторяющиеся пульсации воды, то на коротких расстояниях будут созданы условия стесненного падения, когда проявляется только начальное ускорение, а не конечные скорости падения частиц.

При обогащении неклассифицируемого по крупности материала большую роль в процессе отсадки играет постель – искусственная или естественная.

Искусственная постель создается из крупных и тяжелых минералов ( магнезит, галенит, гранат, сульфиды) или из чугунной и стальной дроби. Размер зерен пастели в 3-4 раза больше размера отверстий решета, а плотность материала постели – меньше плотности тяжелого минерала, присутствующего в руде и больше плотности легкого минерала. Толщина слоя искусственной постели составляет не менее трех размеров максимального зерна в питании.

Естественная постель создается в процессе отсадки из крупных зерен тяжелого минерала, находящегося в руде. Толщина слоя постели составляет обычно для мелкого материала до 20 размеров диаметра максимальных зерен в питании а для крупного материала - 5…10.

При восходящей струе воды постель слегка приподнимается и разрыхляется. Между зернами создаются свободные пространства, образующие различные каналы, по которым продвигаются мелкие тяжелые зерна. Таким образом, постель пропускает частицы тяжелого минерала и задерживает частицы легкого минерала

Неклассифицированный материал, поступающий на отсадку, во время процесса отсадки подвергается сегрегации, т.е. естественному распределению зерен по крупности и плотности ( рис. 76).

 

 

. Рис. 76.Явление сегрегации

а – до отсадки; б – после отсадки

 

 

При сегрегации в нижнем слое, находящемся на решете, концентрируются мелкие тяжелые зерна, затем слой крупных тяжелых зерен, над которым будут находиться мелкие зерна легкого минерала. Крупные зерна легкого минерала будут концентрироваться в самом верхнем слое. Тяжелые минералы нижних слоев при обогащении материала мельче 4 мм будут проходить через отверстия решета и собираться в виде концентрата в подрешетном отделении отсадочной машины, а легкие минералы проходят по постели вдоль камер машины разгружаются через разгрузочный порог последней камеры.

.

В современной практике гравитационного обогащения отсадка крупнозернистого материала производится обязательно с предварительной классификацией по крупности, а мелкий материал ( от 5…6 мм м менее) обогащается без предварительной классификации, но обязательно с применением искусственной постели. Руды, подвергаемые отсадке, имеют крупности 0,25…50 мм, а угли – 0,5…150 мм.

Основными параметрами, регулирующими процесс отсадки, являются частота и амплитуда колебаний среды и расход подрешетной воды. Частота и амплитуда колебания среды зависят прежде всего от крупности и плотности обогащаемого материала. Частота пульсаций определяет скорость восходящего потока среды , достаточную для взвешивания тяжелых зерен максимальной крупности в стесненных условиях. Поэтому число колебаний выбирается с таким расчетом, чтобы легкие частицы под действием восходящего потока среды, не успели осесть до начала следующего цикла , тяжелые зерна при этом должны пройти через постель до ее уплотнения.

Амплитуда колебаний в отсадочных машинах, как правило, составляет не менее 1,5 размера диаметра максимального зерна в обогащаемом материале. Для минеральных частиц большого размера и плотности используется большая амплитуда, но малая частота пульсаций среды, когда достигается высокая скорость восходящего потока, обеспечивается необходимая высота подьема постели и степень разрыхления ее и обогащаемого материала. При большом числе пульсаций снижается степень разрыхления постели.

Процесс отсадки осуществляется при плотности питания 30…35% твердого. Помимо воды, поступающей с исходным питанием в отсадочные машины подается подрешетная вода, расход которой зависит от крупности обогащаемого материала и составляет при отсадке руд от 3 до 8 м3/т. Расход подрешетной воды в общем расходе воды колеблется от 40 до 70%. Подача подрешетной воды регулирует скорость восходящего и нисходящего потока, разрыхленность постели. Увеличение количества подрешетной воды вызывает потери тяжелых минералов с хвостами, а недостаток- ухудшение качества концентрата.

Применяемые в настоящее время большое количество (более 90) типов отсадочных машин принято классифицировать по таким основным признакам, как конструкция приводного механизма ( поршневые, диафрагмовые, с подвижными конусами, с гидравлическим пульсатором, беспоршневые), направление движения разгружаемого продукта ( прямоточные и противоточные), способу разгрузки продуктов обогащения ( шиберная разгрузка, разгрузка через решетку, комбинированная разгрузка), числу ступеней ( одно и многоступенчатые), назначению ( для обогащения крупно и мелкозернистого материала, для обогащения неклассифицированного материала).

Однако в практике обогащения наибольшее распространение получили получили:

· Поршневые отсадочные машины и машины с подвижным решетом;

· Диафрагмовые отсадочные машины

· Беспоршневые или воздушно-пульсационные машины

Поршневые машины и машины с подвижным решетом в настоящее время имеют ограниченное применение. Используются они лишь при обогащении железных , марганцевых руд и угля крупностью от 3 до 40 мм. Эти машины имеют довольно низкую производительность (1,0…25 т/ч) и повсеместно заменяются беспоршневыми и диафрагмовыми машинами. Однако, на примере этих машин, имеющих довольно простое устройство, можно рассмотреть принцип работы отсадочных машин.

В поршневой отсадочной машине с неподвижным решетом , схема которой показана на рис. 77,

 

Рис. 77. Схема отсадочной машины с неподвижным решетом.

 

 

камера 1 имеет перегородку не доходящую до дна камеры. Эта перегородка делит камеру на два сообщающихся между собой отделения- поршневое и концентрационное. В поршневом отделении движется поршень 3, который получает возвратно-поступательные движения от эксцентрикового вала 4. Руда поступает на решено 5 концентрационного отделения. В концентрационном отделении камеры при заполнении всей камеры водой, создается восходящая струя воды, благодаря которой слой рудных частиц разрыхляется. При падении в разрыхленном слое частицы расслаиваются в соответствии с плотностью – в нижнем слое на решете собираются тяжелые частицы, а в верхнем слое – легкие частицы.

При движении поршня вверх в концентрационном отделении образуется нисходящая струя воды, которая улучшает расслаивание частиц за счет увеличения разницы в скоростях падения частиц различной плотности. Непрерывное чередование восходящей и нисходящей струи воды позволяет разделить материал на два слоя: нижний слой тяжелых минералов и верхний слой легких минералов. При крупности обогащаемой руды менее 4 мм тяжелые минералы или тяжелая фракция разгружается под решето, величина отверстий которого больше крупности тяжелых частиц. Легкие частиц2ы под действием горизонтального потока воды разгружается через сливной порог последней камеры. При обогащении крупнокусковой руды тяжелая фракция остается на решете в виде естественной постели и разгружается через боковую или центральную разгрузочную щель в стенке корпуса машины.

Поршневые отсадочные машины бывают двух-, тех- и четырехкамерными. При размере отверстий решета 2 мм производительность их составляет 0,5…3,6 т/ч.

В отсадочных машинах с подвижным решетом восходящие и нисходящие потоки воды создаются при движении самого решета от эксцентрикового привода. Отсадочные машины с подвижным решетом в России выпускаются для извлечения золота из руд и россыпей с площадью отсадки от 6 до 12 м2 ( «Труд 6ПР» и «Труд 12»).

Диафрагмовые отсадочные машины отличаются от поршневых тем, что в них поршень заменен диафрагмой, вертикальные или горизонтальные колебания которой создают вибрации среды. Эти машины широко применяются при обогащении золотосодержащих, оловянных, вольфрамовых и др россыпей и руд. Изготовляются диафрагмовые машины нескольких типов и их конструкции отличаются местом расположения диафрагмы : с вертикальной диафрагмой в перегородке (ОВМ-1), с вертикальной диафрагмой в наружных стенках ( МОД-4), с подвижными коническими днищами ( МОД1. МОД-2, МОД-3, МОД-6).

В диафрагмовой высокочастотной отсадочной машине ОВМ ( рис.78)

 

 

Рис. 78. Диафрагмовая высокочастотная отсадочная машина ОВМ

диафрагма располагается на внутренней вертикальной стенке между отсадочными камерами. Машина состоит из двух отсадочных камер 1 с пирамидальными днищами 2. Камеры разделены междукамерной перегородкой 3, в которой установлена диафрагма 4, состоящей из металлического диска-поршня, связанного с перегородкой резиновой шайбой 5. Диск диафрагмаы прочно укреплен на штоке 6, который проходит через его центр. Шток подвешен на двух стальных пластинах 7, а его концы снабжены резиновыми муфтами – уплотнителями 8. Один конец штока посредством пружинящей пластины 9 связан с эксцентриком кривошипного механизма 10, который приводится в движение электродвигателем 11.

Корпус машины и кривошип жестко укреплены на сварной раме 12. Внутри камеры в верхней части установлены решетки 13, поддерживающие сита 14 и решетки 15 для жесткого крепления сита с предотвращения смещения минеральной постели. Система решеток и сит удерживается в камерах распорными досками 16 при помощи клиньев 17.

В конце камер установлены регулируемые по высоте пороги 18, высота которых подбирается в соответствии с типом и крупностью обогащаемой руды. Подрешетная вода подается через коллектор 19. Разгрузочные устройства для концентрата 20 расположены в нижней части камер.

Исходная руда вместе с водой подается на сито первой камеры, где благодаря непрерывной пульсации воды минеральные частицы расслаиваются по плотности и крупности. Тяжелые частицы, пройдя в промежутках между зерен постели и сито, собираются в коническом днище камеры, откуда периодически или непрерывно разгружаются через разгрузочное устройствл. Частицы легких минералов, а также неосевшие частицы тяжелых минералов выносятся потоком воды через порогл во вторую камеру, где процесс отсадки повторяется, и конечные хвосты ( легкие минералы) выносятся водой через порог второй камеры.

Отсадочные машины ОВМ, техническая характеристика которых приведена в табл. 40, применяются для обогащения руд и россыпей редких и благородных металлов крупностью от 0,1 до 8 мм.

Таблица 40. Техническая характеристика диафрагмовых высокочастотных отсадочных машин ОВМ

Параметры Типоразмер машины
ОВМ-1 ОВМ-3
Производительность, т/ч До 4 До 12
Размеры рабочей камеры, мм 300 х 300 600 х 600
Крупность исходного питания, мм 0,1 - 8 0,1 - 8
Число камер
Полезная площадь сита одной камеры, м2 0,09 0,36
Амплитуда, мм До 16 До 16
Частота вращения вала эксцентрика, мин-1 400 - 960 475 - 825
Расход подрешетной воды, л/с До 1,5 До 5
Мощность электродвигателя. кВт 0,6 2,8
Габаритные размеры, мм: Длина Ширина высота    
Масса, кг

 

Диафрагмолвые отсадочные машины МОД отличаются расположением диафрагмы. Если в машине МОД-4 диафрагма располагается в наружной боковой стенке, то в остальных типах машин МОД вертикальные колебания воды создаются подвижными коническими днищами каждой камеры.

Отсадочная машина МОД-4М2 ( рис. 79) состоит из четырех камер, соединенных попарно. В боковой вертикальной стенке каждой камеры имеются диафрагмы круглой формы, которые приводятся в движение от эксцентрикового привода. Эти машины применяются в основном для обогащения золотосодержащих руд и россыпей крупностью до 30 мм.

 

 

Рис. 79. Диафрагмовая отсадочная машина МОД – 4

1 – задняя траверса; 2 – подрешетная рама; 3 – решето; 4 – надрешетная рама; 5 – корпус; 6 – редуктор; 7 – муфта; 8 – электродвигатель; 9 – разгрузочное устройства; 10 – передняя траверса; 11 – манжета.

 

 








Дата добавления: 2015-06-10; просмотров: 15420;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.017 сек.