Интегральные схемы.
Микроэлектроника –это направление электроники, позволяющее с помощью комплекса технологических, конструктивных и схемотехнических средств создавать малогабаритные, высоконадежные и экономичные электронные устройства.
Микроэлектроника основана на применении интегральных микросхем(ИМС), в которых элементы нераздельно связаны между собой и представляют единое целое. ИМС изготавливают на основе кристалла полупроводника, в качестве которого чаще всего используют кремний. В кристалле кремния создаются p-n-переходы, образующие как активные, так и пассивные элементы электрической схемы. Элементы микросхемы связывают между собой электрически с помощью тонких металлических перемычек. Такой кристалл называют ЧИП (от англ. Chip- кристалл). Характеристикой сложности ИМС является уровень интеграции, оцениваемый числом транзисторов, которые могут быть реализованы в кристалле.
В зависимости от уровня интеграции ИМС делят на несколько категорий:
1. малые ИМС – до 10 элементов (МИС);
2. средние ИМС – от 10 до 100 элементов (СИС);
3. большие ИМС – от 100 до 105 элементов (БИС);
4. сверхбольшие ИМС - 105 и более элементов (СБИС).
В качестве элементов в микросхемах чаще выступают транзисторы, что в особенности касается цифровых микросхем. Современные СБИС содержат несколько десятков миллионов транзисторов, причем степень интеграции постоянно повышается. Необходимо отметить, что четкой границы между БИС и СБИС не существует, и часто их объединяют в один класс БИС/СБИС. На сегодняшний день практическое использование находят все категории ИМС.
Кроме степени интеграции ИМС могут классифицироваться в зависимости от их функционального назначения на два больших класса: цифровые и аналоговые. Цифровые ИМС оперируют с входными напряжениями, дискретно меняющими свое значение, которое соответствует либо «1», либо «0». Аналоговые ИМС используются для преобразования непрерывно изменяющихся во времени сигналов.
Цифровые ИМС в зависимости от степени интеграции могут выполнять простейшие логические преобразования (МИС), образовывать целые узлы цифровых устройств, таких как малоразрядные регистры, счетчики, дешифраторы, сумматоры и т.п. (СИС). Цифровые БИС/СБИС способны выполнять функции уже не отдельного узла, а целой системы. К ним относятся все микропроцессоры ИМС, микросхемы памяти, ИМС программируемой логики, ИМС, реализующие стратегию «Система в кристалле».
Аналоговые ИМС выполняют разнообразные функции: усиление сигналов переменного и постоянного токов, генерирование колебаний различной формы, обеспечение других ИМС стабилизированным напряжением питания, цифроаналоговое и аналого-цифровое преобразование сигналов, фильтрацию сигналов, их модуляцию и демодуляцию и т.п.
По технологии изготовления различают полупроводниковыеи гибридные ИМС.
Полупроводниковая интегральная схема – интегральная микросхема, все элементы и межэлементные соединения которой выполнены в объеме и на поверхности полупроводника.
Современные полупроводниковые ИМС достигают плотности упаковки более 105 эл/см3. Линейные размеры отдельных элементов и расстояния между ними могут быть уменьшены до 1 мкм.
Анализ тенденции развития микроэлектроники показал, что сложность самых больших полупроводниковых ИМС увеличивается приблизительно в два раза ежедневно.
Гибридная интегральная микросхема – интегральная микросхема, пассивные элементы которой выполнены посредством нанесения различных пленок на поверхности диэлектрической подложки из стекла, керамики, ситалла или сапфира, а активные элементы – бескорпусные полупроводниковые приборы.
Плотность упаковки гибридных ИМС несколько меньше – до 150 эл/см3 . Гибридные ИМС перспективны для устройств с небольшим количеством элементов, в которых может быть обеспечена высокая точность параметров.
Высокая точность выполнения пленочных элементов может быть использована при изготовлении микросхем по совмещенной технологии, в которой активные и часть пассивных элементов выполняются в объеме полупроводника, а часть пассивных элементов – на его поверхности в тонкопленочном исполнении. Применение двух технологий повышает стоимость таких микросхем, но позволяет существенно повысить точность их параметров.
В последнее время нашла применение совмещенная технология, в которой в гибридных микросхемах в качестве навесных компонентов используются бескорпусные полупроводниковые интегральные микросхемы. По такой технологии выполняются ИМС до шестой степени интеграции для быстродействующих ЭВМ.
В то же время отдельные активные и пассивные элементы микросхем имеют характеристики, не уступающие навесным (обычным) диодам, транзисторам, резисторам и т.д. Однако их объединение в одной микросхеме приводит к новой качественной возможности создания предельно сложных электронных устройств. Применение ИМС существенно повышает надежность электронных устройств, так как надежность микросхем, содержащих большое количество элементов, не уступает надежности отдельных транзисторов, диодов и резисторов.
Дата добавления: 2015-06-05; просмотров: 1348;