Глава IX
Изменяются ли гены в развитии?
Обсуждение этой проблемы началось, по‑видимому, с А. Вейсмана, который предположил, что при делении соматических клеток раннего зародыша «зародышевая плазма» (нынешняя ДНК) распределяется между дочерними клетками так, что в них попадают разные ее части – детерминанты (нынешние гены). В пользу этих представлений Вейсмана свидетельствовали наблюдения над потерей частей хромосом в соматических клетках во время первых делений дробления у аскариды. Сейчас, когда известно, что феномен утраты части генома аскариды и другие случаи явной потери генетического материала являются отнюдь не общим правилом, эти идеи Вейсмана имеют лишь исторический интерес.
Сегодня проблема, поставленная Вейсманом, может быть сформулирована иначе: происходят ли в ходе развития необратимые изменения в организации генетического материала и какое значение эти изменения, если они есть, имеют для механизмов развития? Уже первые опыты по разделению двух‑четырехклеточных зародышей амфибий и морского ежа на отдельные бластомеры и по получению из них полноценных зародышей показали, что в ходе делений генетический материал сохраняется в обеих дочерних клетках полностью и необратимо не изменяется. Далее Г. Шпеман подтвердил это остроумным опытом и для стадии 16 клеток. Если яйцо тритона перетянуть петлей не полностью, то делиться будет только одна половина, в которой оказалось ядро. На стадии 16 клеток одно ядро пропускали во вторую половину зародыша и
Затем перетягивали зародыш на две части полностью. И тот зародыш, который получил 15 ядер из 16, и тот, что получил только одно, образовали нормальных зародышей.
Эти опыты показали неверность гипотезы Вейсмана, но не могли осветить современный аспект проблемы: не происходят ли в ходе дифференцировки в ядрах необратимые изменения, ограничивающие их тотипотентность – способность обеспечить развитие целого зародыша, т. е. дифференцировку во всех направлениях? На стадии 16 клеток у амфибий дифференцировки еще нет. Для этого было необходимо испытать ядра на более поздних стадиях.
Дальнейшее развитие техники ядерных трансплантаций, как мы увидим, тоже не дало окончательного ответа на эти вопросы. Новые молекулярные методы дали в самые последние годы совершенно неожиданные результаты, однако вопрос еще далек от полного разрешения.
Трансплантация ядер
В 1953 г. американские ученые Бриггс и Кинг осуществили знаменательный эксперимент: из неоплодотворенного яйца лягушки было удалено собственное ядро и на его место пересажено ядро другого зародыша, взятое со стадии бластулы. Фактически трансплантировали всю клетку бластулы, но мембрана ее была разрушена всасыванием в тонкую пипетку, а ядро оставалось неповрежденным. Яйцо с ядром из бластулы в значительном проценте случаев начинало нормально делиться, образовывало зародыш, головастика и наконец лягушку. На всех этих стадиях часть животных погибала, но во многих случаях были получены взрослые нормальные лягушки, которые дали потомство. Техника пересадки была усовершенствована Гёрдоном, и процент удачных трансплантаций был повышен.
Однако, если брать ядра на более поздних стадиях – гаструлы, хвостовой почки и т. д., процент удачных опытов будет все более уменьшаться. Даже ядра из клеток кишечника головастика в некоторых случаях дали начало нормальному эмбриональному развитию. Сходный результат был получен, когда для пересадки использовали ядра из клеток опухоли и из клеток кожи взрослой лягушки, хотя в таких опытах далее головастика развитие не шло. Ядра, полученные из клеток разных тканей, сильно отличались по их пригодности к трансплантации. Ho в целом стало очевидно, что в ходе дифферёнцировки способность ядер давать начало нормальному развитию яйца падает.
Эти опыты были успешно повторены различными исследователями на разных видах амфибий. Однако ни в одном случае из ядер клеток взрослого животного не было получено ни одного взрослого животного. Поэтому если в начале шла речь о том, что на поздних стадиях ядра легче травмируются (и такие повреждения действительно часто обнаруживались), то сейчас очевидно, что одним этим объяснить неудачи нельзя.
Опыты на дрозофиле дали в принципе сходные результаты. Здесь ядра инъецировались в оплодотворенное яйцо, где в момент трансплантации происходили деления собственных ядер. Трансплантированные ядра со стадии бластулы, взятой от другой, иначе пигментированной линии мух, смешивались с собственными ядрами и участвовали в образовании различных органов, показывая тем самым свою тотипотентность. Более того, когда ядра бластулы попадали в заднюю часть яйца, они образовывали нормальные половые клетки, из которых получали мух той линии, чьи ядра были трансплантированы.
Однако, если в оплодотворенное яйцо трансплантировали ядра из клеток культуры тканей, участие этих ядер в образовании различных органов было существенно реже, чем при инъекции эмбриональных ядер. И в этом случае полученные мухи уже никогда не давали потомства с генетическими признаками трансплантированной линии, т. е. половые клетки из таких ядер не возникали. Это тоже свидетельствует о каких‑то ограничениях потенций.
Может быть, со временем дифференцированные ядра удастся каким‑то неизвестным пока образом перевести в менее дифференцированное состояние и тогда их трансплантация с поздних стадий или из клеток взрослого организма окажется успешной. В пользу такой возможности свидетельствуют неудачи трансплантации ядер из клеток зародышевого пути – мужских половых клеток на стадии сперматогоний, когда они еще не начали дифференцироваться в сперматозоиды. В этом случае генетический материал явно не имеет необратимых изменений. Поэтому неудачи легче объяснить техническими трудностями трансплантации, чем принципиальной невозможностью. Тем не менее проще допустить, что в ходе дифференцировкп в ядрах нарастают необратимые изменения.
Такой проблемы, по‑видимому, практически не существует у растений. Там из некоторых видов отдельных клеток взрослого растения удается выращивать целые растения. Этот результат может служить подтверждением отличий растений от животных: у растений многие клетки взрослого организма могут стать клетками зародышевого пути и давать начало новым поколениям.
Если действительно окажется, что у взрослого животного ядра дифференцированных клеток необратимо теряют способность к нормальному развитию, то значительно осложнится заманчивая идея о «клонировании людей», уже обыгранная фантастами и обсужденная с разных сторон учеными. Мы коснемся здесь только биологической стороны вопроса.
Для практического использования метода «клонирования людей» необходимо: а) трансплантировать ядра из клеток взрослого организма и получать нормальное развитие вплоть до взрослого организма; б) распространить эти опыты на млекопитающих: недавно поступили сведения, что после долгих усилий у мышей удалась трансплантация ядер, но пока только из ранних эмбриональных клеток; в) получить уверенность, что результаты всегда будут успешными. Тогда пересадка в безъядерную яйцеклетку человека ядра из клетки взрослого человека и возвращение такой яйцеклетки в женский организм привели бы к рождению ребенка, который генетически был бы однояйцовый близнец донора, от которого было получено ядро. Это означает, что не только внешний вид, но с большой вероятностью и умственные способности были бы тождественны или близки у донора и его «близнеца», который отличался бы от обычных близнецов лишь разницей в возрасте. Если все это оказалось бы так, то перед человечеством открылась бы возможность «повторять» отдельных гениальных ученых или деятелей искусства и даже увеличить их число в большом числе копий. Мы можем не касаться деталей и возникающих проблем – слишком все это пока фантастично. Ho если бы такая идея была осуществлена, это могло бы значительно повысить интеллектуальный и творческий потенциал всего человечества.
Дата добавления: 2015-05-08; просмотров: 719;